Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akane Miyamoto
Xem chi tiết
Lê Quang Phúc
15 tháng 7 2019 lúc 20:05

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) (\(\sqrt{16}=2\sqrt{4}\))

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Ngọc Vũ
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 9 2021 lúc 19:07

1) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)

2) \(\dfrac{3}{5}\sqrt{25x-50}-\sqrt{x-2}=6\left(đk:x\ge2\right)\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=6\)

\(\Leftrightarrow2\sqrt{x-2}=6\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)

nguyen thi mai huong
Xem chi tiết
Thanh Tùng DZ
11 tháng 3 2020 lúc 20:05

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
Thám Tử THCS Nguyễn Hiếu
11 tháng 3 2020 lúc 20:08

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}\)

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

Khách vãng lai đã xóa
nguyen thi mai huong
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
12 tháng 3 2020 lúc 9:24

=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
o0o nhật kiếm o0o
12 tháng 3 2020 lúc 9:28

Ta có : 

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
Xem chi tiết
Nobi Nobita
19 tháng 10 2020 lúc 20:27

\(D=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right).\left(1+\sqrt{2}\right)}=\frac{1}{\sqrt{2}+1}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
Ayase Naru
Xem chi tiết
HO YEN VY
Xem chi tiết
dinhquangchien
2 tháng 7 2018 lúc 7:57

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Nhật Kim Anh
2 tháng 7 2018 lúc 8:00

2,251430954

✰๖ۣۜŠɦαɗøω✰
23 tháng 3 2020 lúc 7:15

Tham khảo nha bạn !

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Khách vãng lai đã xóa
HO YEN VY
Xem chi tiết
VN in my heart
Xem chi tiết