Tìm x thuộc Z để các biểu tức sau đạt GTNN A= (x-1)2 +2008
Tìm x thuộc Z để các biểu thức sau đạt GTNN:
a) A = ( x - 1 )2 + 2008
b) B = / x + 4 / + 1996
c) C = 5 / x - 2
d) D = x + 5 / x - 4
a)A=( x - 1 )2 + 2008
ta thấy:(x-1)2\(\ge\)0
=>(x-1)2+2008\(\ge\)0+2008
=>A\(\ge\)2008
vậy Amin=2008 khi x=1
b)B = | x + 4 | + 1996
=>|x+4|\(\ge\)0
=>|x+4|+1996\(\ge\)0+1996
=>B\(\ge\)1996
c)để C đạt GTNN=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,2,-3,7}
mà C đạt GTNN =>x=-3
d)để D đạt GTNN=>x+5 chia hết x-4
<=>(x-4)+9 chia hết x-4
=>9 chia hết x-4
=>x-4\(\in\){1,-1,3,-3,-9,9}
=>x\(\in\){5,3,7,1,13,-5}
mà D đạt GTNN
=>x=1
mà D đạt GTNN =>x=-3
Tìm x thuộc Z để các biểu thức sau đat GTNN
A=(x-1)2 +2008B=|x+5| +20091, Vì (x-2)2 > 0
=> (x-1)2 + 2008 > 2008
Dấu "=" xảy ra
<=> (x-1)2 = 0
<=> x-1 = 0
<=> x = 1
KL: Amin = 2008 <=> x = 1
2, Vì |x+5| > 0
=> |x+5| + 2009 > 2009
Dấu "=" xảy ra
<=> |x+5| = 0
<=> x+5 = 0
<=> x = -5
KL: Bmin = 2009 <=> x = -5
1, A = ( x - 1 )2 + 2008
Mà : ( x - 1 )2 \(\ge\) 0
Mà : Amin => ( x - 1 )2
<=> x = 1
=> Amin = 2008 khi x = 1
2, B = | x + 5 | + 2009
Vì : | x + 5 | \(\ge\) 0
Mà : Bmin => | x + 5 | = 0
<=> x = -5
=> Bmin = 2009 khi x = -5
Tìm x thuộc Z để các biểu thức sau đạt GTNN C= 5 / ( x-2)
Tìm x thuộc Z để các biểu thức đạt GTLN
M=2009-(x+1)2008
N=2010-|3-x|
Tìm x thuộc Z đê các biểu thức sau đạt GTNN D= \(\frac{x+5}{x-4}\)
Tìm x thuộc z để các bt sau đạt GTLN
P= \(\frac{5}{\left(x-3\right)^2}+1\)
Q= \(\frac{4}{\left|x-2\right|+2}\)
tìm x là số nguyên sao cho biểu thức sau đạt GTLN, GTNN(nhớ là tìm GTLN, rồi tìm GTNN sau)
a. A=20-(x+1)^2008
b.B=(x-1)^2+90
Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20 - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x
=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1
b) Vì (x-1)2 \(\ge\) 0 với mọi x => (x-1)2 + 90 \(\ge\) 0 + 90 = 90 với mọi x
=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1
đấy nha, tự trả lời đê, ai bảo nói mk kia
Câu 1:tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
a) A =( x -1)2 +2008 ;b) B =l x +4 l +1996
Câu 2:tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
a) P =2010-(x + 1)2008 ;b) Q =1010-l3 - xl
Câu 3:Sắp xếp các phân số sau theo thứ tự tăng dần:
1/3;1/5;-2/15;1/6;-2/-5;-1/10;4/15.
Giải hộ mik 2 câu này nhé, giải xong nhớ giải thích nữa nha! (Mình kém dạng toán này lắm!)
Bài 1: Tìm x nguyên để các biểu thức sau đạt GTNN:
\(D=\frac{x+5}{\left|x-4\right|}\)
Bài 2: Tìm x nguyên để biểu thức sau đạt GTLN:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN
1) Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
a : A=(x-1)2 + 2008
b : B= |x+4| + 1996
2) Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
a) P= 2010 - (x+1)2008
b) Q=1010 - |3-x|
c) C=5/ (x-3)2 +1
Bài 1
a) có (x-1)^2 lon hơn hoặc bằng 0
=> ( x-1)^2 + 2008 lớn hơn hoac bang 2008
=> A lớn hơn hoac bang 2008
vay giai tri nho nhát la .2008
b) có | x+4| lon hon hoặc bang 0
=>| x+4| + 1996 lon hon hoặc bang 1996
=> B lon hon hoặc bang 1996
vay B nho nhất la 1996
bai 2
a)-( x+1)^2008 nho hơn hoặc bang 0
=> 2010- (x+ 1)^2008 nho hơn hoặc bang 2010
=> P nho hon hoặc bang 2008
vay gia tri lon nhất của P là 2008
những phần kia tương tự như vậy, nhớ like nhé
a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b)
x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)