\(\frac{1}{2\cdot5}\)+\(\frac{1}{5\cdot8}\)+\(\frac{1}{8.11}\)+.......\(\frac{1}{92.95}\)+\(\frac{1}{95.98}\)
Tính: A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
A = \(\frac{1}{2}-\frac{1}{98}\)
A = \(\frac{24}{49}\)
Vậy A = \(\frac{24}{49}\)
~~~
#Sunrise
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{1}{3}.\frac{24}{49}=\frac{8}{49}\)
A=1/3.(1/2-1/5 + 1/5 - 1/8 +......+1/92 - 1/95 + 1/95 - 1/98)
A=1/3.(1/2 - 1/98)
A=1/3. 48/98
A=48/294
Theo mk thì như vậy
Chúc bạn hok tốt ^O^
Tính: A= \(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+....+\(\frac{1}{92.95}\)+\(\frac{1}{92.95}\)+\(\frac{1}{95.98}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+............+\frac{1}{92.95}+\frac{1}{95.98}\)
\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..........+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.............-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{49}{98}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
Vậy A = \(\frac{8}{49}\)
Phân tích: 1/2.5 = 1/2 - 1/5
1/5.8 = 1/5 - 1/8
1/8.11 = 1/8 - 1/11
...
1/92.95 = 1/92 - 1/95
1/95.98 = 1/95 - 1/98
Ta có: 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
3 = 3/2.5 + 3/5.8 + 3/8.11 + ...+ 3/92.95 + 3/95.98
3 = 1 - 1/2 + 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
= 1 - 1/98
= 97/98 : 3 = 97/98 x 1/3 = (tự tính)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{24}{49}\)
\(A=\frac{8}{49}\)
_CHúc bạn học tốt_
Tính :
A=\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...........+\frac{1}{92.95}+\frac{1}{95.98}\)
B=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+.........+\frac{2}{97.100}\)
ai nhanh mk tik nhé !!!
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\cdot\frac{48}{98}\)
\(A=\frac{16}{98}=\frac{8}{49}\)
\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)
\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)
\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)
\(B=2\cdot\frac{33}{100}\)
\(B=\frac{33}{50}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98
3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98
3A = 1/2 - 1/98
3A = 24/49
A = 24/49 : 3
A = 72/49
B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100
3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100
3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100
3/2B = 1 - 1/100
3/2B = 99/100
B = 99/100 : 3/2
B = 33/50
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)
\(\Rightarrow A=\frac{24}{49}:3=\frac{8}{49}.\)
Vậy \(A=\frac{8}{49}.\)
\(\frac{3}{2}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow B=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}.\)
Vậy \(B=\frac{33}{50}.\)
Tính:
A= \(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+....+\(\frac{1}{92.95}\)+\(\frac{1}{95.98}\).
A=1/3x(1/2x5+1/5x8+......+1/95x98)
A=1/3x(1/2-1/5+1/5-1/8+.........+1/95-1/98)
A=1/3x(1/2-1/98)
A=1/3x24/49
A=8/49
A =\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1.3}{2.5.3}+\frac{1.3}{5.8.3}+\frac{1.3}{8.11.3}+...+\frac{1.3}{92.95.3}+\frac{1.3}{95.98.3}\)
A = \(\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
A =\(\frac{1}{3}.\frac{97}{98}\)
A =\(\frac{97}{294}\)
bạn Nguyễn Hoàng Phúc sai ở chỗ 1/2-1/98
\(A=\hept{\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\hept{\begin{cases}1\\8\cdot11\end{cases}+....+\frac{1}{92.95}+\hept{\begin{cases}1\\95\cdot98\end{cases}}}}\)
Mong các bạn giải giúp câu này mình với ! càng nhanh càng tốt
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
A = \(\frac{1}{3}\).{ \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)}
A = \(\frac{1}{3}\).{\(\frac{1}{2}-\frac{1}{98}\)}
A = \(\frac{1}{3}.\left\{\frac{49}{98}-\frac{1}{98}\right\}\)
A=\(\frac{1}{3}.\frac{24}{49}\)
A = \(\frac{49}{98}\)
\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{5\cdot8}-...-\frac{1}{89\cdot92}-\frac{1}{92\cdot95}\)
mk sửa lại đề nha
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
= \(1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)
= \(1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)
= \(1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
= \(1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
= \(1-\frac{1}{3}.\frac{93}{190}\)
= \(1-\frac{31}{190}\)
= \(\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{89.92}-\frac{1}{92.95}\)
\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.9}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
TÍNH
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)
\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\cdot\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-..-\frac{1}{92.95}=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+..+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}=1-\frac{31}{190}=\frac{159}{190}\)
học tốt nha
\(\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\frac{1}{8\cdot7}-\frac{1}{7\cdot6}-\frac{1}{6\cdot5}-\frac{1}{5\cdot4}-\frac{1}{4\cdot3}-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
Tính nhanh:
A=\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\\ \)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\\ =\frac{3}{8}\)
Chúc bn học thiệt giỏi nhé!
cảm ơn bẹn nhìu