Chứng minh phân số n+1/n+2 tối giản với n thuộc N
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh rằng phân số n/n+1 là phân số tối giản với mọi n thuộc N*
Gọi \(d=ƯC\left(n;n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Rightarrow n+1-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\) phân số \(\dfrac{n}{n+1}\) là phân số tối giản
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
chứng minh phân số n/n-1 tối giản (với n thuộc n*) ?
Ta có: Gọi d là UC(n;n+1)
=> n+1 chia hết cho d, n chia hết cho d (1)
=> (n+1) - n = 1 (2)
Từ (1) và (2) => 1 chia hết cho d
=> d = + 1
Vậy phân số n/n+1 là phân số tối giản.
chứng minh phân số 2n+1 phần 5n+2 là 1 phân số tối giản với n thuộc n
Chứng minh phân số n + 1/2n+1 với n thuộc N* là phân số tối giản
gọi d thuộc ước chung lớn nhất của n+1 và 2n+1(d thuộc N*)
suy ra n+1 chia hết cho d
2n+1 chia hết cho d
nên 2.(n+1) chia hết cho d
2n+1 chia hết cho d
2n+2 chia hết chod
2n+1 chia hết cho d
(2n+2)-(2n+1) chia hết cho d
nên 1 chia hết cho d
vậy d=1
c/m p/số n+1/2n+1 với n thuộc N* là phân số tối giản
Chứng minh rằng n/n+1 là phân số tối giản với mọi n thuộc N
gọi d là ƯC(n; n + 1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
=> n + 1 - n ⋮ d
=> 1 ⋮ d
=> d = 1
=> n/n+1 là phân số tối giản với mọi n thuộc N
\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)
gọi d là ƯCLN
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản
~ Học Tốt ~
Chứng minh phân số sau tối giản n+1/n+2 (n thuộc N*)
Gọi d =(n+1;n+2) => n+1; n+2 chia hết cho d
=>( n+2 ) - (n+1) = n+2 - n -1=1 chia hết cho d
=> d =1
Vậy \(\frac{n+1}{n+2}\) là phân số tối giản.
Đặt UCLN(n + 1 ; n + 2) = d
n+1 chia hết cho d
n + 2 chia hết cho d
=> [(n + 2) - (n + 1)] chia hết cho d
1 chia hết cho d ; Mà Ư(1) = {1}
Vậy d = 1
Chứng minh phân số sau là phân số tối giản:
n+1/n+2 với n thuộc N
Các bạn giải hộ mình nhé!
Gọi d là ƯCLN ( n+1; n+2 )
=> n + 1 ⋮ d
=> n + 2 ⋮ d
=> [ n + 2 - n + 1 ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( n + 1; n + 2 ) = 1 => n + 1 / n + 2 là p/s tối giản