Cho S=1-3+3^2-3^3+......+3^98-3^99
cmr S là bội của -20
cho S=1-3+3^2-3^3+...+3^98-3^99. CMR S là bội của -20
S=1-3+32-33+........................+398 -399
S=(1-3+32-33)+(34-35+36-37)+..............+(396-397+398-399)
S=(1-3+32-33)+34.(1-3+32-33)+...............+396.(1-3+32-33)
S=(-20)+34.(-20)+..................+396.(-20)
S=(-20).(1+34+................+396)\(⋮\)(-20)
=>S\(⋮\)(-20)
Vậy S\(⋮\)(-20)
Chúc bn học tốt
Cám ơn bn nha!!!
Cho S=1-3+3^2-3^3+....+3^98=-3^99. Chứng minh S thuộc bội của -20
S = 1 - 3 + 32 - 33 +....+ 398 - 399 = (1 - 3 + 32 - 33) + ... + (396 - 397 + 398 - 399) = 1.(1 - 3 + 32 - 33) + ... + 396.(1 - 3 + 32 - 33) = (1 - 3 + 32 - 33).(1 + 34 + 38 + ... + 396) = (1 - 3 + 9 - 27).(1 + 34 + 38 + ... + 396) = -20.(1 + 34 + 38 + ... + 396) => S ⋮ -20 => S là bội của -20. Vậy S là bội của -20
Cho S = 1 - 3 + 32 + .......... + 398 - 399. Chứng minh rằng S là bội của -20
S có số số hạng là
(99-0):1+1=100(số hạng)
ta thấy 100 chia hết cho 4 nên ta ghép 4 số liên tiếp lại với nhau ta có
S=(1-3+32-33)+....+(396-397+398-399)
S= -20+...+(-20) chia hết cho -20(đpcm)
cho S = 1-3+3^2-3^3+...+3^98-3^99+3^100
a, chứng minh S là bội của 20
b,tính S từ đó suy ra S:4 dư 1
cho S= 1-3+3^2-3^3+...+3^98-3^99
a) chứng minh rằng s là bội của -20 b) Tính S, từ đó suy ra 3^300 chia cho 4 dư 1
Cho S=1-3+3^2-3^3+....+3^98-3^99
Chứng minh rằng S thuộc bội của -20
S = (1 - 3 + 32 - 33) + (34 - 35 + 36 - 37) + .... + ( 396 - 397 + 398 - 399)
= (1 - 3 + 32 - 33) + 34(1 - 3 + 32 - 33) + .... + 396(1 - 3 + 32 - 33)
= (1 - 3 + 9 - 27) + 34(1 - 3 + 9 - 27) + ..... + 396(1 - 3 + 9 - 27)
= - 20 + 34( - 20 ) + .... + 396( - 20 )
= - 20( 1 + 34 + .... + 396) chia hết cho - 20 ( đpcm )
cho S=1-3+3^2-3^3+....+3^98-3^99
a) chứng minh rằng S là bội của-20
b) Tính S từ đó suy ra 3^100:4 dư 1
a)S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396) là bội của -20(ĐPCM)
b)S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
Cho S= 1-3+3^2-3^3+...+3^98-3^99
a.CMR: S là bội của -20
b.tính S,từ đó suy ra 3^100 :4 dư 1
Ta có :
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= 1 ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
= 1 ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= 1 . ( - 20 ) + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20 ( 1 + 34 + ... + 396 ) chia hết cho - 20
=> S chia hết cho -20
Nhân cả hai vế với 3 , ta được :
3S = 3 ( 1 - 3 + 32 - 33 + ... + 398 - 399 )
=> 3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
Trừ S cho 3S ta được :
S - 3S = ( 1 - 3 + 32 - 33 + ... + 398 - 399 ) - ( 3 - 32 + 33 - 34 + ... + 399 - 3100 )
=> - 2S = 1 - 3 + 32 - 33 + ... + 398 - 399 - 3 + 32 - 33 + 34 - ... - 399 + 3100
=> - 2S = 1 + 3100
=> S = \(\frac{1+3^{100}}{-2}\)
Cho S=1-3+3^2+......+3^98-3^99
a, Chứng minh rằng S là bội của -20
b, Tính S, từ đó suy ra 3^100 chia cho 4 dư 1
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )