Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Hoàng Thùy
Xem chi tiết
nguyentiendung
Xem chi tiết
Maéstrozs
Xem chi tiết
vũ việt hùng
5 tháng 3 2020 lúc 16:38

tính giá trị biểu thức sau:

M=3 mũ 2/2*5 + 3 mũ 2/5*8 + 3 mũ 2 /8*11 +....+ 3 mũ 2/98*101

Khách vãng lai đã xóa
DrEam
5 tháng 3 2020 lúc 16:44

Vì \(\left(x+1\right)^{30}+\left(y+2\right)^{50}\ge0\)mà theo đề bài ta có\(\left(x+1\right)^{30}+(y+2)^{50}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^{30}=0\\\left(y+2\right)^{50}=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

                                              Vậy \(x=-1,y=-2\)

Khách vãng lai đã xóa
nguyễn thị minh ánh
Xem chi tiết
Đỗ Hà Trang
14 tháng 10 2015 lúc 22:15

Ta có: 

212-2(X+1) =1

=> 212-2(X+1)= 20

=> 12 - 2(x+1) = 0

=> 2(x+1)=12

=>x+1=6

=> x=5

Thay x=5 vào biểu thức A= x2 +x+1 , ta được :

A = 52 + 5+1= 25+6 = 31

Vậy A = 31 tại x thỏa mãn 212 - 2(x+1)=1

Lưu Minh Quân
Xem chi tiết
Đoàn Đức Hà
28 tháng 9 2021 lúc 9:10

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Với \(x=0\Leftrightarrow y=0\)

Với \(x,y\ne0\)

\(\left(\sqrt{x^2+1}-x\right)\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)

Tương tự ta cũng có: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)

suy ra \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

\(M=10x^4+8y^4-15xy+6x^2+5y^2+2017\)

\(=18x^4+26x^2+2017\ge2017\)

Dấu \(=\)tại \(x=0\Rightarrow y=0\).

Khách vãng lai đã xóa
ly my
Xem chi tiết
Huyền Nhi
27 tháng 12 2018 lúc 9:36

\(a,A=4x+2+2x-2-5x-6x^2-44x+2+2x-2-5x-6x^2-4\)

\(=\left(4x+2x-5x-44x+2x-5x\right)-\left(6x^2+6x^2\right)+\left(2-2+2-2-4\right)\)

\(=-46x-12x^2-4\)

Thay \(x=7373\) vào biểu thức A, ta có :

\(-46.7373-12.7373^2-4\)

\(-652672710\)

Triệu Vy
Xem chi tiết
Dương Lý Khuê
Xem chi tiết
Nguyễn Hải Đăng
13 tháng 10 2021 lúc 16:33
Lấy 1 -1 2
Khách vãng lai đã xóa
^($_DUY_$)^
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 13:19

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)

\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

c: \(x^3-x^2+2=0\)

=>\(x^3+x^2-2x^2+2=0\)

=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

=>x+1=0

=>x=-1

Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)