Tìm ghiệm của các đa thức
x2+1/2x
(3x+5)*(5x-2x)
a(x)=x^3+5x^2-5x-2x^2+10x-18 b(x)=-x^3-5x^2+3x+2x^2-x-2 a)thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến b)tìm đa thức m(x) sao cho m(x)-A(x)=B(x) c)tìm nghiệm của đa thức m(x)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
A. Tìm GTLN của -5x^2-4x+1
B. Tìm GTNN của 2x^2+3x+1
Tìm GTLN của C=-5x^2-4x+1
Tìm GTNN của B=2x^2+3x+1
Cho 2 đa thức :
A(x)=2x2 _ 5x+1
B(x)=2x2 _ 3x-4
Hãy tìm giá trị của x để hai đa thức trên bằng nhau.
để A(x)=B(x)
=>2x^2-5x+1=2x^2-3x-4
=> -5x+1=-3x-4
=> 2x=5
=> x=5/2
Cho biểu thức:
P=( 3+x/3-x - 3-x/3+x + 4x²/x²-9 ) : ( 2x+1/x+3 - 1 )
a) Rút gọn P
b) Tìm giá trị của P biết: 2x²-5x+2=0
c) Tìm các giá trị nguyên của x để P có giá trị nguyên dương.
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
Câu 1. Cho hai đa thức :
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x.\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b) Tính P(x) + Q(x) và P(x) - Q(x)
c) Chứng tỏ rằng x=0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x).
Câu 2. Cho đa thức:
\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3.\)
a) Sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến.
b) Tính M(1) và M(-1).
c) Chứng tỏ rằng đa thức trên không có nghiệm.
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Tìm giá trị nhỏ nhất của các biểu thức sau:
A=x2-2x+5
B=x2-x+1
C=2x2-3x+5
A=x2-2x+5=x2-2x+1+4=(x-1)2+4
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Amin <=> \(\left(x-1\right)^2+4=4\)
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy Amin=4 khi x=1
Tìm nghiệm của các đa thức sau :
X.(2X+2)
Cho đa thức : P(x) = \(5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến
b) Chứng tỏ đa thức trên không có nghiệm
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)