Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị NGọc ANh
Xem chi tiết
Cô Hoàng Huyền
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Nguyễn Cảnh Kyf
Xem chi tiết
Nguyễn Linh Chi
27 tháng 2 2020 lúc 14:22

ĐK: \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\)

pt <=> \(2x\sqrt{y-1}+4y\sqrt{x-1}=3xy.\)

<=> \(xy-2x\sqrt{y-1}+2xy-4y\sqrt{x-1}=0\)

<=> \(x\left(y-1\right)-2\sqrt{x}.\sqrt{x\left(y-1\right)}+x+2\left[y\left(x-1\right)-2\sqrt{y}\sqrt{y\left(x-1\right)}+y\right]=0\)

<=> \(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}-\sqrt{x}=0\\\sqrt{y\left(x-1\right)}-\sqrt{y}=0\end{cases}}\)vì (\(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2\ge0\)với mọi x, y)

<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}=\sqrt{x}\\\sqrt{y\left(x-1\right)}=\sqrt{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}y-1=1\\x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\left(tm\right)\)

Kết luận:...

Khách vãng lai đã xóa
Nguyễn Cảnh Kyf
27 tháng 2 2020 lúc 16:57

Ths bạn

BT học sinh giỏi lớp 9 :))

Khách vãng lai đã xóa
Sam Sam
Xem chi tiết
Pain Thiên Đạo
26 tháng 5 2018 lúc 18:44

tích đi rồi t làm 

Pain Thiên Đạo
27 tháng 5 2018 lúc 20:08

9 T I C H  sai buồn

\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)

nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung 

\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)

\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)

\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)

b) thay y=625 vào ta được

\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)

vậy   \(0< x< 5\)

Phạm Xuân Sơn
Xem chi tiết
zZz Cool Kid_new zZz
13 tháng 1 2020 lúc 18:02

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

Khách vãng lai đã xóa
Phạm Xuân Sơn
13 tháng 1 2020 lúc 18:32

câu a làm cách khác đi bạn

Khách vãng lai đã xóa
Hoàng Anh
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết
Nguyễn Mai Hương
22 tháng 2 2018 lúc 19:12

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

pham thi thu trang
22 tháng 2 2018 lúc 19:59

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)

Nguyễn Minh Đăng
Xem chi tiết
Minh Anh Trần
Xem chi tiết
Quỳnh Chi
6 tháng 3 2020 lúc 14:39

a )

(x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
6 tháng 3 2020 lúc 14:49

1.tìm các số nguyên x và y sao cho:

(x-3).(2y+1)=7

Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên

                               =>x-3  ; 2y+1 C Ư(7)

ta có bảng:

x-317-1-7
2y+171-7-1
x4102-4
y30-4-1

Vậy..............................................................................

2.tìm các số nguyên x và y sao cho:

xy+3x-2y=11

x.(y+3)-2y=11

x.(y+3)-y=11

x.(y+3)-(y+3)=11

(x-1)(y+3)=11

Vì x;y là số nguyên => x-1;y+3 là số nguyên

                               => x-1;y+3 Thuộc Ư(11)

Ta có bảng:

x-1111-1-11
y+3111-11-1
x2120-10
y8-2-14-4

Vậy.......................................................................................

Khách vãng lai đã xóa
Napkin ( Fire Smoke Team...
6 tháng 3 2020 lúc 19:31

\(a,\left(x-3\right).\left(2y+1\right)=7\)

\(Do:x;y\inℤ=>\hept{\begin{cases}x-3\\2y+1\end{cases}\in}ℤ\)

\(=>x-3;2y+1\inƯ\left(7\right)\)

Nên ta có bảng sau :

x-3-1-717
2y+1-7-171
x2-4410
y-4-130

Vậy...

Khách vãng lai đã xóa
Nhat Pham Long
Xem chi tiết