Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nakamori Aoko
Xem chi tiết
Đào Mai Phương Anh
Xem chi tiết
Đinh Thị Phương Anh
Xem chi tiết
Khánh Ngọc
18 tháng 8 2021 lúc 22:20

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

Khách vãng lai đã xóa
Đinh Thị Phương Anh
Xem chi tiết
Ứng Phạm Linh Như
18 tháng 8 2021 lúc 21:00

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

Khách vãng lai đã xóa
Nguyễn Minh Quang
18 tháng 8 2021 lúc 21:08

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

Khách vãng lai đã xóa
Đinh Thị Phương Anh
Xem chi tiết
Nguyễn Minh Quang
19 tháng 8 2021 lúc 10:13

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

Khách vãng lai đã xóa
Đinh Thị Phương Anh
Xem chi tiết
Phạm Hồng Thảo Nhi
18 tháng 8 2021 lúc 21:48

ban hoc lop may vay

Khách vãng lai đã xóa
phung tran minh hieu
Xem chi tiết
Thấu Kì Sa Hạ
Xem chi tiết
Khánh Ngọc
29 tháng 7 2020 lúc 15:52

Ta có :

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)

\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)

\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)

\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)

b. Bổ sung điều kiện : A thuộc Z 

Để  \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)

\(\Leftrightarrow2n+3_{max}\in Z^-\)

Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)

\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)

Vậy Amax = 16 <=> n = -2

Khách vãng lai đã xóa
Phạm Thanh Huyền
Xem chi tiết
Bùi Minh Quang
24 tháng 4 2023 lúc 20:03

Ta có: 

B

=

10

n

3

4

n

10

=

2

,

5

(

4

n

10

)

+

22

4

n

10

 

=

2

,

5

(

4

n

10

)

4

n

10

+

22

4

n

10

=

2

,

5

+

22

4

n

10

 

Vì n là số tự nhiên nên 

B

=

2

,

5

+

22

4

n

10

 đạt giá trị lớn nhất khi 

22

4

n

10

 đạt đạt giá trị lớn nhất.

 

Mà 

22

4

n

10

 đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.

 

+) Nếu 4n – 10 = 1 thì 4n = 11 hay 

n

=

11

4

 (loại)

 

+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)

 

Khi đó 

B

=

2

,

5

+

22

2

=

13

,

5

 

Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3