Tìm số dư phép chia \(2^{70}+15^{71}\) khi chia cho 7
Tìm số dư của phép chia: \(E=2^{70}+15^{71}\) khi chia cho 7
Bài 1: Tìm số dư trong phép chia 570+770chia cho 12
Bài 2: Chứng minh 3012 93-1 chia hết cho 13
[ Tính theo phép đồng dư nha ]
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Bài 1
a) Tìm số dư trong phép chia 4.10mux100+1 khi chia cho 3
b) Tìm số dư trong phép chia 1+2+3+4+...+99+100 khi chia cho 9
c) Tìm số dư của phép chia 1+3+5+7+...+17+19 khi chia cho 2
tìm số dư của phép chia 5^70+7^50 chia cho 12
1 phép chia có SBC là 71 thương là 7 và số dư lớn nhất có thể. tìm SC và số dư của phép chia
nếu thêm 1 đ/v vào SBC thì phép chia sẽ trỏ thành phép chia hết và thương tăng 1 đ/v
71+1=72
7+1 =8
72:8=9
địt mẹ vãi lồn con chó xồn
trong 1 phép chia số tự nhiên cho số tự nhiên, số chia là 71 số thương là 35 ,số dư là số lớn nhất có thể được của phép chia đó . Tìm số bị chiatrong 1 phép chia số tự nhiên cho số tự nhiên, số chia là 71 số thương là 35 ,số dư là số lớn nhất có thể được của phép chia đó . Tìm số bị chia
Số dư lớn nhất khi chia cho 71 là 70. Số bị chia là
71x35+70=2555
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Một phép chia có số bị chia là 345, thương là 5, số dư bằng thương,số chia bằng thương. Số chia trong phép chia đó là A.68 B. 69 C. 70 D.71
là A.68 bạn nhé
_HT_