Tìm các cặp số nguyên x. y sao cho xy-x-y=2
Tìm các cặp số nguyên (x; y) sao cho: xy – x + 2(y – 1) = 2
Tìm các cặp số nguyên x,y sao cho x+xy+y=1
\(x+xy+y=1\)
\(2x+2xy+2y=2\)
\(2x\left(1+y\right)+2y=2\)
\(2x\left(y+1\right)+2y+2=4\)
\(2x\left(y+1\right)+2\left(y+1\right)=4\)
\(\left(2x+2\right)\left(y+1\right)=4\)
\(2\left(x+1\right)\left(y+1\right)=4\)
\(\left(x+1\right)\left(y+1\right)=2\)
\(TH1:\left\{{}\begin{matrix}x+1=1\\y+1=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x+1=2\\y+1=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x+1=-2\\y+1=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
\(Vậy...\)
x+xy+y=1⇔x(y+1)+y+1=2⇔(x+1)(y+1)=2
⇒(x+1;y+1)=(-1;-2),(-2;-1),(1;2),(2;1)
sau tự tính nhé :3
Tìm các cặp số nguyên (x : y ) sao cho xy = -(x+ y)
xy = -(x+ y)
<=> xy+x+y=0
<=> x(y+1)+(y+1)=1
<=> (x+1)(y+1)=1
Lập bảng là ra
Tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\dfrac{x^2-2}{xy+2}\) có giá trị là số nguyên
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
Tìm tất cả các cặp số nguyên (x;y) sao cho xy=x+y
xy=x+y
nên : xy-(x+y)=0
xy-x-y =0
x(y-1)-y =0 suy ra x(y-1)-(y-1)=1
(x-1)(y-1)=1
ta có
X - 1 | -1 | 1 |
|
Y - 1 | -1 | 1 |
|
X | 0 | 2 |
|
Y | 0 | 2 |
|
|
Tìm các cặp số nguyên (x, y) sao cho: x - xy + y = −1
\(x-xy+y=-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-2\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=-2\)
mà \(x,y\)là số nguyên nên ta có bảng giá trị:
x-1 | -2 | -1 | 1 | 2 |
1-y | 1 | 2 | -2 | -1 |
x | -1 | 0 | 2 | 3 |
y | 0 | -1 | 3 | 2 |
Tìm các cặp số nguyên x và y sao cho x – y = xy – 1.
tìm các cặp số nguyên x,y sao cho xy = x-y
xy = x - y
=> xy - x + y = 0
=> x(y - 1) + (y - 1) = 0 - 1
=> (x + 1)(y - 1) = -1
=> x + 1 và y - 1 thuộc Ư(-1) = {1;-1}
Ta có bảng:
x + 1 | 1 | -1 |
y - 1 | -1 | 1 |
x | 0 | -2 |
y | 0 | 2 |
Vậy các cặp (x;y) là (0;0) ; (-2;2)
Tìm các cặp số nguyên (x : y ) sao cho xy = -(x+ y)
\(xy=-\left(x+y\right)\)
\(\Leftrightarrow xy+x+y=0\)
\(\Leftrightarrow x.\left(y+1\right)+\left(y+1\right)=1\)
\(\Leftrightarrow\left(x+1\right).\left(y+1\right)=1\)
.....