Cho hình vuông ABCD trên BA lấy I DI cắt BC tại E CI cắt AE tại M Chứng minh DE vuông góc với MB
cho hình vuông ABCD. lấy điểm I nằm trên cạnh AB ( I khác A và B ), tia DI cắt CB tại E, tia CI cắt AE tại M. chứng minh : BM vuông góc DE
Trên tia đối tia AB lấy P sao cho AP = BE
\(\Delta PAD=\Delta EBA\left(c.g.c\right)\)\(\Rightarrow\widehat{PDA}=\widehat{A_1}\)
Mà \(\widehat{D_1}=\widehat{E_1}\)( c/m )
Ta có : \(\widehat{PDE}+\widehat{DEF}=\widehat{PDA}+\widehat{D_1}+\widehat{FED}=\widehat{A_1}+\widehat{E_1}+\widehat{FED}=90^o\)
\(\Rightarrow EF\perp PD\)
Xét \(\Delta PBC\)và \(\Delta ECD\)có :
PB = EC ; \(\widehat{PBC}=\widehat{ECD}\); BC = CD
\(\Rightarrow\Delta PBC=\Delta ECD\left(c.g.c\right)\)
\(\Rightarrow\widehat{CPB}=\widehat{E_1}\)
Ta có : \(\widehat{CPB}+\widehat{PID}=\widehat{E_1}+\widehat{EIB}=90^o\)
\(\Rightarrow CP\perp ED\)
do đó : F là trực tâm \(\Delta EPD\)
\(\Rightarrow DF\perp EP\) ( 1 )
Xét \(\Delta EPC\)có : \(PB\perp EC;EI\perp CP\) nên I là trực tâm \(\Delta EPC\)
\(\Rightarrow CM\perp EP\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DF//IM\Rightarrow\frac{MI}{FD}=\frac{EI}{ED}=\frac{EM}{EF}\) ( 3 )
\(IB//CD\Rightarrow\frac{EB}{EC}=\frac{EI}{ED}\) ( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{MI}{FD}=\frac{EB}{EC}\Rightarrow BM//FC\)
\(\Rightarrow BM\perp DE\)
p/s : mệt
Cho hình vuông ABCD. Lấy I\(\in\)AB. DI giao BC tại E. Từ D kẻ DK vuông góc với DI cắt BC tại K. CI giao AE tại M. CMR: BM vuông góc với DE.
I thuộc AB sao AI cắt BC tại E được?
Cho hình vuông ABCD cạnh a . Lấy điểm I trên cạnh AB, đường thẳng DI cắt đường thẳng BC tại E. Đường thẳng CI cắt đường thẳng AE tại M và cắt đường thẳng AD tại P. Đường thẳng BM cắt AP tại K.Đat AI = x
a: Tính BE;AP theo a và x
b:Chung minh rang : AK=AI
c: Chứng minh rằng BM vuông góc với DE
có đứa nào ngu như mày ko nguyen hai yen hahahahahah
Cho hình vuông ABCD trên BC lấy E, tia AE cắt các đường thẳng CD tại M và tia DE cắt AB tại N Chứng minh BM vuông góc với CN
cho hình vuông ABCD . trên AB lấy I , DI cắt BC tại E , CI cắt AE tại M , cắt AD tại P . đường thẳng BM cắt AP tại K , cắt DE tại F biết AB = a , AI = x .
a , Tính BE , AP theo a , x .
b , CMR tam giác ADI đồng dạng với tam giác CED .
c, CMR AK = AI và DF vuông góc với BK .
a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)
Điểm I nằm trên AB => BI = AB - AI = a - x
Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)
Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)
b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED
Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).
c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)
\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)
Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).
+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD
Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK
=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).
Cho hình vuông ABCD cố định. Một điểm I di động trên cạnh AB (I khác A và B). Tia DI cắt đường thẳng CB tại E. Đường thẳng CI cắt AE tại M. Đường thẳng BM cắt đường thẳng DE tại F.
1. Chứng minh rằng BI^2/BE^2 = AI/CE.
2. Trên tia đối của tia AB lấy điểm P sao cho AP = BE. Đường thẳng AE cắt CP tại H. Chứng minh rằng DH song song CI.
3. Tìm quỹ tích điểm F khi I di động trên cạnh AB.
cho hình vuông ABCD trên cạch BC lấy E . AE cắt CD tại M . DE cắt AB tại N . chứng minh :
a, tam giác NBC đồng dạng với tam giác BCM
b, BM vuông góc với CN
Cho hình vuông ABCD. Trên BC lấy E, tia AE cắt đường CD tại M. Tia DE cắt đường AB tại N. Chứng minh
a) tam giác NBC đồng dạng với tam giác BCM
b) BM vuông góc với CN
giúp
Cho hình vuông ABCD, trên cạnh BC lấy điểm M, AM cắt đường thẳng CD tại điểm N. Kéo dài DM cắt BN tại I. Chứng minh rằng CI vuông góc với AN