cho A=x+1+\(\frac{1}{x-1}\) . Tìm giá trị nhỏ nhất của A biết x>1
(ko dùng bất đẳng thức cauchy)
Cho x,y là số thực dương, thỏa mãn x+y=1.
Tìm giá trị nhỏ nhất của \(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
( Làm theo cách dùng bất đẳng thức cô si í ạ... Thank mn)
Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)
\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)
Lại có:
\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)
Dấu "=" xảy ra tại x=y=1/2
Giúp mình với mọi người!!
1. Cho a,b > 1. Tìm GTNN của \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\) ( đừng dùng bất đẳng thức Cauchy-Schwart nha)
2. Tìm GTLN của biểu thức sau: \(B=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)
cho bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng bất đẳng thức trên tìn giá trị nhỏ nhất của\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
với x,y dương và x+y=1
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
Tìm giá trị nhỏ nhất của x^2 / (x-1) với x >1 [bất đẳng thức Cô-si]
\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)
Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :
\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)
\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha
Mình nhầm, GTNN=4 chứ ko phải =3 đâu nha!
Cho hai số dương x và y thỏa mãn đẳng thức :\(\frac{2017}{x}+\frac{2018}{y}=1\)
tìm giá trị nhỏ nhất của biểu thức A =x+y
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
mình có phần của mấy bài tập này
mình tải về rùi mà ko nhớ link
có đáp án nữa
1. Giả sử 7 là số hữu tỉ 7 m
n
(tối giản). Suy ra
2
2 2
2
7 m hay 7n m
n
(1).
Đẳng thức này chứng tỏ m2 7 mà 7 là số nguyên tố nên m 7. Đặt m = 7k
(k Z), ta có m2 = 49k2 (2). Từ (1) và (2) suy ra 7n2 = 49k2 nên n2 = 7k2 (3).
Từ (3) ta lại có n2 7 và vì 7 là số nguyên tố nên n 7. m và n cùng chia hết
cho 7 nên phân số m
n
không tối giản, trái giả thiết. Vậy 7 không phải là số
hữu tỉ; do đó 7 là số vô tỉ.
2. Khai triển vế trái và đặt nhân tử chung, ta được vế phải. Từ a) b) vì
(ad – bc)2 ≥ 0.
3. Cách 1 : Từ x + y = 2 ta có y = 2 – x. Do đó : S = x2 + (2 – x)2 = 2(x – 1)2
+ 2 ≥ 2.
Vậy min S = 2 x = y = 1.
Cách 2 : Áp dụng bất đẳng thức Bunhiacopxki với a = x, c = 1, b = y, d = 1,
ta có :
(x + y)2 ≤ (x2 + y2)(1 + 1) 4 ≤ 2(x2 + y2) = 2S S ≥ 2. mim S = 2
khi x = y = 1
4. b) Áp dụng bất đẳng thức Cauchy cho các cặp số dương
bc và ca ; bc và ab ; ca và ab
a b a c b c
, ta lần lượt có:
bc ca 2 bc . ca 2c; bc ab 2 bc . ab 2b
a b a b a c a c
; ca ab 2 ca . ab 2a
b c b c
cộng
từng vế ta được bất đẳng thức cần chứng minh. Dấu bằng xảy ra khi a = b =
c.
c) Với các số dương 3a và 5b , theo bất đẳng thức Cauchy ta có :
3a 5b 3a.5b
2
.
(3a + 5b)2 ≥ 4.15P (vì P = a.b) 122 ≥ 60P P ≤ 12
5
max P = 12
5
.
Dấu bằng xảy ra khi 3a = 5b = 12 : 2 a = 2 ; b = 6/5.
5. Ta có b = 1 – a, do đó M = a3 + (1 – a)3 = 3(a – ½)2 + ¼ ≥ ¼ . Dấu “=”
xảy ra khi a = ½ .
CHUYÊN ĐỀ : BỒI DƯỠNG HS GIỎI VÀ NĂNG KHIẾU 24
Vậy min M = ¼ a = b = ½ .
6. Đặt a = 1 + x b3 = 2 – a3 = 2 – (1 + x)3 = 1 – 3x – 3x2 – x3 ≤ 1 – 3x +
3x2 – x3 = (1 – x)3.
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a3 + b3 = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)2(a + b).
8. Vì | a + b | ≥ 0 , | a – b | ≥ 0 , nên : | a + b | > | a – b | a2 + 2ab + b2
≥ a2 – 2ab + b2
4ab > 0 ab > 0. Vậy a và b là hai số cùng dấu.
9. a) Xét hiệu : (a + 1)2 – 4a = a2 + 2a + 1 – 4a = a2 – 2a + 1 = (a – 1)2 ≥
0.
b) Ta có : (a + 1)2 ≥ 4a ; (b + 1)2 ≥ 4b ; (c + 1)2 ≥ 4c và các bất đẳng thức
này có hai vế đều dương, nên : [(a + 1)(b + 1)(c + 1)]2 ≥ 64abc = 64.1 = 82.
Vậy (a + 1)(b + 1)(c + 1) ≥ 8.
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)2 ≥ 0, nên (a + b)
2 ≤ 2(a2 + b2).
b) Xét : (a + b + c)2 + (a – b)2 + (a – c)2 + (b – c)2. Khai triển và rút gọn, ta
được :
3(a2 + b2 + c2). Vậy : (a + b + c)2 ≤ 3(a2 + b2 + c2).
11. a)
2x 3 1 x 3x 4 x 4
2x 3 1 x 3
2x 3 x 1 x 2 x 2
b) x2 – 4x ≤ 5 (x – 2)2 ≤ 33 | x – 2 | ≤ 3 -3 ≤ x – 2 ≤ 3 -1
≤ x ≤ 5.
c) 2x(2x – 1) ≤ 2x – 1 (2x – 1)2 ≤ 0. Nhưng (2x – 1)2 ≥ 0, nên chỉ có
thể : 2x – 1 = 0
Vậy : x = ½ .
12. Viết đẳng thức đã cho dưới dạng : a2 + b2 + c2 + d2 – ab – ac – ad = 0
(1). Nhân hai vế của (1) với 4 rồi đưa về dạng : a2 + (a – 2b)2 + (a – 2c)2 +
(a – 2d)2 = 0 (2). Do đó ta có :
a = a – 2b = a – 2c = a – 2d = 0 . Suy ra : a = b = c = d = 0.
13. 2M = (a + b – 2)2 + (a – 1)2 + (b – 1)2 + 2.1998 ≥ 2.1998 M ≥
1998.
CHUYÊN ĐỀ : BỒI DƯỠNG HS GIỎI VÀ NĂNG KHIẾU 25
Dấu “ = “ xảy ra khi có đồng thời :
a b 2 0
a 1 0
b 1 0
Vậy min M = 1998 a = b
= 1.
14. Giải tương tự bài 13.
15. Đưa đẳng thức đã cho về dạng : (x – 1)2 + 4(y – 1)2 + (x – 3)2 + 1 = 0.
Cho biểu thức \(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tìm GTNN của P
c) Tìm giá trị nguyên của x để P có giá trị nguyên
Gợi ý : dùng bđt Schwarz và bđt Cauchy
Tự tìm ĐKXĐ nhé
\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)
\(\Rightarrow x=\left\{0\right\}\)
Kết hợp với ĐKXĐ =>...
Câu 1:Cho biết thức A = \(\frac{1}{x-1}\)+ \(\frac{4}{x^2-1}\)- \(\frac{2}{x^2-2x+1}\)
a/ Tìm điều kiện xác định của x để biểu thức A xác định
b/ Rút gọn A
Câu 2: Tìm giá trị nhỏ nhất của phân thức B=\(\frac{x^2-2}{x^2+1}\)
Tìm x để giá trị của biểu thức X2 + 2x -2 là nhỏ nhất
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Để A xác định
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)
\(\Rightarrow x^2-1\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,