Chung to rang cac phan so sau toi gian voi moi STN n
a)n+1/2n+3 b)2n+3/4n+8
chung minh rang moi phan so sau toi gian voi moi so tu nhien n:
a.n+1/2n+3 b.2n+3/4n+8
a) Gọi d là ƯCLN(n+1;2n+3)
Ta có: n+1 chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> (2n+3)-(2n+2)=1 chia hết cho d
=> d thuộc Ư(1)={1;-1}
Vậy n+1/2n+3 là phân số tối giản với n là số tự nhiên ĐPCM
b) Gọi d là ƯCLN(2n+3;4n+8)
Ta có: 2n+3 chia hết ch d
4n+8 chia hết cho d => 2n+4 chia hết cho d
=> (2n+4)-(2n+3)=1 chia hết cho d
=> d thuộc Ư(1)={1;-1}
=> 2n+3/4n+8 là phân số tối giản với mọi n thuộc số tự nhiên ĐPCM
chung to phan so toi gian voi n thuoc n a , n+1/2n+3 b, 2n +3 /4n +8
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản
chung to voi moi n thuoc * thi cac phan so sau day la phan so toi gian
B)\(\frac{2n-1}{2n-2}\)
c) \(\frac{2n+3}{6n+8}\)\
d) \(\frac{4n+1}{14n+3}\)
Gọi d là ƯCLN ( 2n - 1 ; 2n - 2 )
=> 2n - 1 ⋮ d
=> 2n - 2 ⋮ d
=> [ ( 2n - 2 ) - ( 2n - 1 ) ] ⋮ d
=> 2 - 1 ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 2n - 1 ; 2n - 2 ) = 1 nên 2n-1/2n-2 là phân số tối giản
Ccs câu sau làm tương tự
Chung to rang phan so
\(\frac{2n+3}{4n+8}\)
toi gian voi moi so tu nhien.
Gọi d là ƯCLL(2n+3,4n+8).
2n+3 \(⋮\)d \(\Rightarrow\)4n+9 \(⋮\)d
4n+8 \(⋮\)d
\(\Rightarrow\)(4n+9)-(4n+8) \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
Vì ƯCLL(2n+3,4n+8)= 1 nên 2n+3/4n+8 là phân số tối giản
tk mình nha
Goi d la UCLN(2n+3 , 4n+8)
\(\Rightarrow2n+3⋮d\)
\(4n+8⋮d\)
\(\Rightarrow2\left(2n+3\right)⋮d\)
\(4n+8⋮d\)
\(\Rightarrow4n+6⋮d\)
\(4n+8⋮d\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in U\left(1,2\right)\)
Ma \(2n+3\) la so le
\(\Rightarrow d=1\)
\(\Rightarrow\frac{2n+3}{4n+8}la\) p/s toi gian voi moi n \(\in\)N
Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> (4n+6) - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác {2;-2} => d = {1;-1}
Vậy 2n+3/4n+8 tối giản
Chung minh rang phan so sau toi gian voi moi n thuoc N 2n+1/2n(n+1)
chung minh voi moi STN n cac so sau la 2 so nguyen to cung nhau
2n+3 va 4n+8
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Chung to rang phan so sau toi gian voi moi n thuộc N
2n+1/2n(n+1)
Lam on do ai lam dc minh cho 6 tich
Chung to rang phan so sau toi gian voi mọi n thuộc N
2n+1/2n(n+1)
chung minh rang voi moi so tu nhien n, cac so sau la hai so nguyen to cung nhau:
a) 7n + 10 va 5n + 7
b) 2n +3 va 4n +8
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )