Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Luong
Xem chi tiết
Anh Mai Quốc
21 tháng 4 2019 lúc 21:14

ĐKXĐ: \(x\ne a;x\ne-2\)

PT\(\Leftrightarrow\frac{\left(x+a\right)\left(x-a\right)}{\left(x+2\right)\left(x-a\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-a\right)}=2\)

\(\Rightarrow\left(x+a\right)\left(x-a\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-a\right)\)

\(\Leftrightarrow x^2-a^2+x^2-4=2\left(x^2+2x-ax-2a\right)\)

\(\Leftrightarrow2x^2-a^2-4=2x^2+4x-2ax-4a\)

\(\Leftrightarrow-a^2-4=\left(4-2a\right)x-4a\)

\(\Leftrightarrow\left(2a-4\right)x=a^2-4a+4\)

\(\Leftrightarrow2\left(a-2\right)x=\left(a-2\right)^2\)

Nếu a=2 thì PT có vô số nghiệm khác 2 và -2

Nếu a khác 2 thì PY có 1 nghiệm \(x=\frac{a-2}{2}\)với ĐK \(\hept{\begin{cases}\frac{a-2}{2}\ne-2\\\frac{a-2}{2}\ne a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-2\ne-4\\a-2\ne2a\end{cases}}\)

\(\Leftrightarrow a\ne-2\)

Vậy nếu a=2 thì PT có vô số nghiệm khác \(\pm\)2.Nếu a \(\ne\pm\)2 thì PT có 1 nghiệm \(x=\frac{a-2}{2}\).Nếu a=-2 thì PT vô nghiệm.
 

Minh Trần Quang
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Tống Khánh Ly
Xem chi tiết
Khá Bảnh
Xem chi tiết
Đức Lộc
12 tháng 4 2019 lúc 19:18

Điều kiện xác định của phương trình: \(a\ne\pm b\)

Biến đổi phương trình:

(x - a)(a - b) + (x - b)(a + b) = - 2ab

<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab

<=> 2ax = a2 + b2 - 2ab

<=> 2ax = (a - b)2               (1)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.

Kết luận:

Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại, \(S=\varnothing\)

Tuấn Nguyễn
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2019 lúc 13:57

Điều kiện xác định: a ≠ 0.

Ta có:Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇔ x( a + 2 ) > 1/a    ( 1 )

+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

+ Nếu a < - 2 thì nghiệm của bất phương trình làBài tập tổng hợp chương 4 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R

Nguyễn Văn Tiến
Xem chi tiết
Đặng Ngọc Quỳnh
11 tháng 10 2020 lúc 22:23

Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
12 tháng 10 2020 lúc 7:29

\(ĐKXĐ:a\ne-1\)

\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)

* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)

* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)

Khách vãng lai đã xóa
Nguyễn Đăng Dư
1 tháng 1 2022 lúc 21:41

?????????????????????????

Khách vãng lai đã xóa