Chứng minh: Nếu số ab =3 lần số cd thì số abcd chia hết cho 43
1. Chứng minh rằng nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
2. a, Chứng minh rằng số có dạng abcabc chia hết cho 7,11,13
b, Áp dụng câu a ko thực hiện phép chia hãy cho biết trong các số sau số nào chia hết cho 7, số nào chia hết cho 11, số nào chia hết cho 13 .272283,236243,579572
3. Chứng minh rằng nếu ab=cd*3 thì abcd chia hết cho 43
4. Cho abc+deg chia hết cho 37 . Chứng minh abcdeg chia hết cho 37
giải ra giùm mình nhé
ai trả lời được mình k cho
Chứng minh nếu số abcd chia hết cho 99 thì ab+cd chia hết cho 99
abcd chia het cho 99
=>ab.100+cd chia het cho 99
=>ab.99+(ab+cd) chia het cho 99
Vi ab.99 chia het cho 99
Nen ab+cd chia het cho 99 (ĐPCM)
chứng minh rằng :nếu ab+cd chia hết cho 11 thì abcd cũng chia hết cho 11(biết rằng ab; cd là số tự nhiên có hai chữ số;abcd là số tự nhiên có 4 chữ số
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
Chứng minh rằng: nếu số abcd chia hết cho 99 thì ab + cd chia het cho 99 và ngược lại
Chứng minh rằng số abcd chia hết cho 7 nếu ab= 3 .cd
Ta có: abcd = 100ab + cd
= 100.3.cd + cd
= 300.cd + cd
= (300 + 1).cd
= 301.cd
Vì \(301⋮7\Rightarrow abcd⋮7\)
Ta có : abcd = ab00 + cd
= 100.cd + cd
= 3.100.cd + cd
= 300.cd + cd
= 301.cd
= 7.43.cd \(⋮\)7
\(\Rightarrow\)abcd \(⋮\)7 nếu ab = 3.cd
Vậy abcd \(⋮\)7 nếu ab = 3.cd (đpcm)
Mình mới vào nên chưa biết nhiều .Giúp mình nha , thanks
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết 99 thì ab + cd chia hết cho 99 và ngược lại
Bài 2 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
chứng minh rằng: nếu số abcd chia hết cho 99 thì số ab+cd chia hết cho 99