Cmr A= x^4(x-z)+y^4(z-x)+z^4(x-y) >0 với mọi x>y>z
CMR: x/x+1 +y/y+1+z/z+1 bé hơn hoặc bằng 3/4 với mọi x,y,z>0; x+y+z=1
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
vì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>=\frac{9}{x+1+y+1+z+1}=\frac{9}{1+3}=\frac{9}{4}\)(bđt svacxo)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)< =3-\frac{9}{4}=\frac{3}{4}\)
dấu = xảy ra khi x=y=z=\(\frac{1}{3}\)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Cho x>y>z.CMR: A=x4(y-z)+y4(z-x)+z4(x-y)>0 với mọi x,y,z
Cho x,y,z>0 và x+y+z=2020
CMR: a, x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=2020
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
cho x,y,z>0 thoa man x+y+z=1.CMR \(\dfrac{x^4+y^4}{x^3+y^3}+\dfrac{y^4+z^4}{y^3+z^3}+\dfrac{z^4+x^4}{z^3+x^3}\ge1\)
Bài này có đúng là của lớp 7 không bạn?
cho x>y>z CMR x^4(y-z)+y^4(z-x)+z^4(x-y)>0
\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)
\(x>y\Rightarrow x^4>y^4\)
\(y>z\Rightarrow y-z>0\)
\(x>z\Rightarrow z-x< 0\)
\(\Rightarrow y-z>z-x\)
\(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)
\(x>y\Rightarrow x-y>0\)
Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)
Cho x+y+z=0, CMR: x^4+y^4+z^4=2(x^2.y^2+y^2.z^2+x^2.z^2)