A) Cho B = 8n +23 / 4n + 5
Tìm n thuộc Z để B là phân sống tối giản
B) cho C = 4n -7 / 2n + 1
Tìm n thuộc Z để C rút gọn được
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Cho phân số B=\(\frac{-10}{2n+1}\)với n thuộc z
a, Tìm n để phân số B thuộc z
b, Tìm n để phân số rút gọn được
c, tìm n để phân số B tối giản
Cho phân số B= 4n+1/2n-3, ( n thuộc Z)
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTLN
Bg
a) Ta có: B = \(\frac{4n+1}{2n-3}\) (n thuộc Z)
Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)
=> 4n + 1 ⋮ 2n - 3
=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3
=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3
=> 4n + 1 - (4n - 6) chia hết cho 2n - 3
=> 4n + 1 - 4n + 6 chia hết cho 2n - 3
=> 4n - 4n + 1 + 6 chia hết cho 2n - 3
=> 7 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
Ư(7) = {1; 7; -1; -7}
Lập bảng:
2n - 3 = | 1 | 7 | -1 | -7 |
n = | 2 | 5 | 1 | -2 |
(loại vì không phải scp) | (loại) | (loại) |
Vậy n = {2; -2} thì B là số chính phương
b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3 (ta chỉ cần loại những số n trong bảng)
=> n không thuộc {2; 5; 1; -2}
c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0
=> 2n - 3 = 1
=> 2n = 1 + 3
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2 thì B đạt GTLN
b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d
=> 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d
=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)
c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).
Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.
2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm.
Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất.
=> 2n - 3 đặt giá trị dương nhỏ nhất .
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Cho A= 4n+1/ 2n-3
a)Tìm n để A thuộc Z
b) Tìm n để A là phân số tối giản
a) Để A thuộc Z thì :
\(4n+1⋮2n-3\)
\(\Rightarrow4n-6+7⋮2n-3\)
Ta có : \(4n-6⋮2n-3\)
\(\Rightarrow7⋮2n-3\)
\(\Rightarrow2n-3\in\left(1;-1;7;-7\right)\)
\(\Rightarrow2n\in\left(4;2;10;-4\right)\Leftrightarrow n\in\left(2;1;5;-2\right)\)
b) Để A là phân số tối giản thì n không là ước của 7
a)Ta có \(A\in Z\)
\(\Rightarrow4n+1⋮2n-3\)
\(\Rightarrow4n+4⋮2n\)
\(\Rightarrow2n+2⋮n\)
Mà \(2n⋮n\)
\(\Rightarrow2⋮n \)\(\Rightarrow n\inƯ\left(2\right)\)
=> n = -2;-1;1;2
a ) Để A thuộc Z thì 4n + 1/2n - 3 thuộc Z
=> 4n + 1 \(⋮\)2n - 3
=> 4n - 6 + 7 \(⋮\)2n - 3
=> 2 . ( 2n - 3 ) + 7 \(⋮\)2n - 3 mà 2 . ( 2n - 3 ) \(⋮\)2n - 3 => 7 \(⋮\)2n - 3
=> 2n - 3 thuộc Ư ( 7 ) = ...
Tìm n
b ) Gọi d thuộc Ư C ( 4n + 1 , 2n - 3 ) , d nguyên tố
=> \(\hept{\begin{cases}4n+1⋮d\\2n-3⋮d\end{cases}}\)=> \(\hept{\begin{cases}4n+1⋮d\\4n-6⋮d\end{cases}}\)=> ( 4n + 1 ) - ( 4n - 6 ) \(⋮\)d
=> 7 chia hết cho d => d thuộc Ư ( 7 ) mà d nguyên tố => d = 7
Với d = 7 thì 4n + 1 \(⋮\)7
=> 8n+ 2 \(⋮\)7
=> ( 7n + 7 ) + ( n - 5 ) \(⋮\)7 mà ...
=> n - 5 \(⋮\)7 => n = 7k + 5 ( k thuộc N )
Khi đó 2n - 3 = 2.( 7k + 5 ) - 3 = 14k + 10 - 3 = 14k + 7 \(⋮\)7
=> với n = 7k + 5 thì phân số A chưa tối gian
Do đó nếu n khác 7k + 5 thì phân số A tối giản
Vậy ...
ban hoc lop may vay
B = 4n + 7 / 2n + 4
a. Tìm n (thuộc Z ) để B là phân số
b. Tính giá trị của biểu thức khi n = 3 ; n = -2
c. CMR B là phân số tối giản
d. Tìm n để B là số nguyên
Ko ai giúp mình à
Mình cần gấp
Mong các anh chị giúp minh
đdddddddddddddddddddddddddddddddd
\(B=\frac{4n+7}{2n+4}\)
a) Để B là phân số => \(2n+4\ne0\Rightarrow n\ne-2\)
b) Với n = 3 ( tmđk )
Khi đó B = \(\frac{4\cdot3+7}{2\cdot3+4}=\frac{19}{10}\)
Vậy B = 19/10 khi n = 3
Với n = -2 ( không tmđk )
=> B không xác định khi n = -2
c) Gọi d là ƯCLN( 4n + 7 ; 2n + 4 )
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)
\(\Rightarrow4n+8-4n-7⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> ƯCLN( 4n + 7 ; 2n + 4 ) = 1
=> B là phân số tối giản ( đpcm )
d) \(B=\frac{4n+7}{2n+4}=\frac{2\left(2n+4\right)-1}{2n+4}=2-\frac{1}{2n+4}\)
Để B nguyên => \(\frac{1}{2n+4}\)nguyên
=> \(1⋮2n+4\)
=> \(2n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n+4 | 1 | -1 |
n | -3/2 | -5/2 |
Vậy n = { -3/2 ; -5/2 }
Cho B=(4n+1)/2n+3 (n thuộc Z)
1, tìm n thuộc Z để B thuộc Z
2, tìm n để B tối giản
3, tìm min , max của B