Chứng minh rằng: C=1/2 x 3/4 x 5/6......9999/10000<1/100
Nhanh nha mình tick cho 2 cái!
cho A=1/2*3/4*5/6*...*9999/10000. chứng minh rằng A <1/100
Bn tham khảo bài làm tại link này nha :
https://olm.vn/hoi-dap/detail/3377429592.html
~ Hok tốt ~
Câu hỏi của Thùyy Linhh - Toán lớp 6 - Học toán với OnlineMath
Chứng minh rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}< \frac{1}{100}\)
Ta có:
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< D\)
Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)
Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)
Hay \(C\cdot C< \frac{1}{10001}\)
\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)
Vậy \(C< \frac{1}{100}\left(đpcm\right)\)
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)
Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)
Mặt khác ta thấy:
\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)
\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)
\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)
Rút gọn phép tính \(C.N\)
\(C.N=\frac{1}{10001}\)
\(C.C< N\Rightarrow C.C< C.N\)
Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)
\(\Rightarrow C< \frac{1}{10000}\)(đpcm)
Chứng minh rằng
a, B= 1+1/2+1/3+1/4+....+1/63 <6
b, C =1/2.3/4.5/6.....9999/10000 <1/100
B< 1+(1/1.2+1/2.3+...+1/62.63)
B<1+(1-1/2+1/2-1/3+...+1/62-1/63)
B<1+1-1/63
B<2-1/63
B<6-3/189
mà 6-3/189<6
Vậy B<6
b, gọi D=2/3.4/5....10000/10001
Ta có: 1/2<2/3 3/4<4/5 .. ..... 9999/10000<10000/10001
=> C<D 1
C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001
C.D=1/10001 2
Từ 1 : C<D => C.C<C.D<1/10001
=>C^2<1/10001<1/10000
=>C^2<(1/100)^2
Vậy C<1/100 (đpcm)
1 rút gọn 1/1 X 3 + 1/3 X 5 + 1/5 X 7+......+ 1/(2n+1) X (2n+3)
2 so sánh 1/2 X 3/4 X 5/6 X...... X 9999/10000 và 1/100
3 Tìm số tự nhiên x biết
1/3 +1/6 +1/10+....+2/x(x+1)=2017/2019
4 Chứng minh rằng
1/4 +1/16 +1/36 +1/64 +1/100 +1/144 +1/196 < 1/2
Chứng tỏ rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}........\frac{9999}{10000}\)
Chứng minh rằng \(C<\frac{1}{100}\)
Chứng tỏ rằng \(C=\dfrac{1}{2}\times\dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{9999}{10000}< \dfrac{1}{100}\)
Chứng minh rằng:
a=1+1/2^2+1/3^2+1/4^2+...+1/100^2<2
b=1+1/2+1/3+1/4+...+1/63<6
c=1/2.3/4.5/6....9999/10000<1/100
a, Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(...\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< 2\)
@Nguyễn Khanh
b, 1 = 1
1/2 + 1/3 = 1/(1 + 1) + 1/(1 + 2) < 2/(1 + 1) = 2/2 = 1
1/4 + 1/5 + 1/6 + 1/7 = 1/(3 + 1) + 1/(3 + 2) + 1/(3 + 3) + 1/(3 + 4) < 4/(3 + 1) = 4/4 = 1
1/8 + 1/9 + ... + 1/15 = 1/(7 + 1) + 1/(7 + 2) + ... + 1/(7 + 8) < 8/(7 + 1) = 8/8 = 1
1/16 + 1/17 + ... + 1/31 = 1/(15 + 1) + 1/(15 + 2) + ... + 1/(15 + 16) < 16/(15 + 1) = 16/16 = 1
1/32 + 1/33 + ... + 1/63 = 1/(31 + 1) + 1/(31 + 2) + ... + 1/(31 + 32) < 32/(31 + 1) = 32/32 = 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 1 + 1 + 1 + 1 + 1 + 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 6 (đpcm)
@Nguyễn Khanh
Đặt A = 1/2 . 3/4 . 5/6 . ... . 9999/10000 (A > 0)
Và B = 2/3 . 4/5 . 6/7 . ... . 10000/10001 (B > 0)
Ta có A.B = 1/2 . 2/3 . 3/4 . ... . 10000/10001 = 1/10001 (1)
Mặt khác :
1/2 < 2/3
3/4 < 4/5
...
9999/10000 < 10000/10001
Nhân tất cả theo vế ---> A < B ---> A2 < A.B (2)
Từ (1),(2) => A2 < 1/10001 => A < \(\sqrt{\dfrac{1}{10001}}\) < \(\sqrt{\dfrac{1}{10000}}\) = 1/100 (đpcm)
@Nguyễn Khanh