Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bé chuột yêu
Xem chi tiết
Nguyễn Vũ Minh Hiếu
13 tháng 5 2019 lúc 16:48

Bn tham khảo bài làm tại link này nha :

https://olm.vn/hoi-dap/detail/3377429592.html

~ Hok tốt ~

Mạnh Lê
13 tháng 5 2019 lúc 16:49

Câu hỏi của Thùyy Linhh - Toán lớp 6 - Học toán với OnlineMath

Neo Amazon
Xem chi tiết
Wall HaiAnh
2 tháng 5 2018 lúc 20:27

Ta có:

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)

\(\Rightarrow C< D\)

Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)

Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)

Hay \(C\cdot C< \frac{1}{10001}\)

\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)

Vậy \(C< \frac{1}{100}\left(đpcm\right)\)

Thùyy Linhh
Xem chi tiết
Thái Thanh Tâm
22 tháng 6 2017 lúc 8:46

Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)

\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)

Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)

Mặt khác ta thấy:

\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)

\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)

\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)

Rút gọn  phép tính \(C.N\)

\(C.N=\frac{1}{10001}\)

\(C.C< N\Rightarrow C.C< C.N\)

Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)

\(\Rightarrow C< \frac{1}{10000}\)(đpcm)

Phan Việt Đức
Xem chi tiết
Lê Khánh Linh
5 tháng 5 2021 lúc 22:22

B< 1+(1/1.2+1/2.3+...+1/62.63)

B<1+(1-1/2+1/2-1/3+...+1/62-1/63)

B<1+1-1/63

B<2-1/63

B<6-3/189

mà 6-3/189<6 

Vậy B<6

b, gọi D=2/3.4/5....10000/10001

Ta có: 1/2<2/3     3/4<4/5      .. .....      9999/10000<10000/10001

=> C<D                 1

C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001

C.D=1/10001       2

Từ 1 : C<D => C.C<C.D<1/10001

                   =>C^2<1/10001<1/10000

                   =>C^2<(1/100)^2

Vậy C<1/100 (đpcm)

Khách vãng lai đã xóa
Nguyen Trân Bảo Phúc
Xem chi tiết
Amazons Mega
Xem chi tiết
Long Vũ Hải
Xem chi tiết
Omega Neo
Xem chi tiết
Nguyễn Khanh
Xem chi tiết
Khánh Linh
26 tháng 7 2017 lúc 16:06

a, Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(...\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< 2\)

@Nguyễn Khanh

Khánh Linh
26 tháng 7 2017 lúc 16:19

b, 1 = 1
1/2 + 1/3 = 1/(1 + 1) + 1/(1 + 2) < 2/(1 + 1) = 2/2 = 1
1/4 + 1/5 + 1/6 + 1/7 = 1/(3 + 1) + 1/(3 + 2) + 1/(3 + 3) + 1/(3 + 4) < 4/(3 + 1) = 4/4 = 1
1/8 + 1/9 + ... + 1/15 = 1/(7 + 1) + 1/(7 + 2) + ... + 1/(7 + 8) < 8/(7 + 1) = 8/8 = 1
1/16 + 1/17 + ... + 1/31 = 1/(15 + 1) + 1/(15 + 2) + ... + 1/(15 + 16) < 16/(15 + 1) = 16/16 = 1
1/32 + 1/33 + ... + 1/63 = 1/(31 + 1) + 1/(31 + 2) + ... + 1/(31 + 32) < 32/(31 + 1) = 32/32 = 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 1 + 1 + 1 + 1 + 1 + 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 6 (đpcm)
@Nguyễn Khanh

Khánh Linh
26 tháng 7 2017 lúc 16:26

Đặt A = 1/2 . 3/4 . 5/6 . ... . 9999/10000 (A > 0)
Và B = 2/3 . 4/5 . 6/7 . ... . 10000/10001 (B > 0)
Ta có A.B = 1/2 . 2/3 . 3/4 . ... . 10000/10001 = 1/10001 (1)
Mặt khác :
1/2 < 2/3
3/4 < 4/5
...
9999/10000 < 10000/10001
Nhân tất cả theo vế ---> A < B ---> A2 < A.B (2)
Từ (1),(2) => A2 < 1/10001 => A < \(\sqrt{\dfrac{1}{10001}}\) < \(\sqrt{\dfrac{1}{10000}}\) = 1/100 (đpcm)

@Nguyễn Khanh