tìm các số tự nhiên m và n thỏa mãn đẳng thức
mn + 3m = 5n - 3
tìm các số tự nhiên m và n thỏa mãn đẳng thức mn+3m=5n-3
tìm các số tự nhiên m và n thỏa mãn đẳng thức mn+3m=5n-3
mnbhajfhbgjrhjusfvb uksdryhweuktyudtgvzcbjfhf
tìm các số tự nhiên m và n thỏa mãn đẳng thức mn+3m=5n-3
tìm các số tự nhiên m và n thỏa mãn đẳng thức
mn + 3m = 5n - 3
tim cac số tự nhiên m và n thỏa mãn đẳng thức mn+3m=5n-3
Tìm tất cả các số tự nhiên N thỏa mãn (5n+14)chia hết cho(N+3)
\(5n+14=5n+15-1=5\left(n+3\right)-1⋮\left(n+3\right)\\ =>n+3\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ =>n=\left\{-2;-4\right\}\)
mà n là số tự nhiên
\(=>\) không có giá trị thoả mãn
nếu m, n là các số tự nhiên thỏa mãn: 4m2+m= 5n2+n thì m-n và 5m+5n+1 đều là số chính phương
bạn thi hsg ak bài nay dễ mak
có 4m^2+m=5n^2+n
<=>m-n+5m^2-5n^2=m^2
<=>(m-n)(5m+5n+1)=m^2 (1)
gọi ƯCLN(m-n;5m+5n+1)=d ta c/m d=1
có m-n chia hết d; m,n là các số tự nhiên
<=>5m-5n chia hết d
và có 5m+5n+1 chia hết d
=>10m+1 chia hết d (2)
(1)=> m^2 chia hết cho d
=>m chia hết d (m là số tự nhiên)
=>10m chia hết cho d (3)
từ (2),(3)=>1 chia hết cho d
=>d =1 (4)
từ (1),(4)=>đpcm.
bài này phải áp dụng kiến thức lớp 6 vào .
Tìm hai số tự nhiên m và n biết m . n +3m= 5n- 3
m(n+3)=5n−3
⇔m(n+3)=5n−3
⇒m=5n−3/n+3 Vì m là số tự nhiên nên 5n−3/n+3 cũng phải là số tự nhiên
⇒5n−3⋮n+3
⇒5(n+3)−18⋮n+3
⇒18⋮n+3⇒n+3∈Ư(18)Vì n+3≥3
⇒n+3∈{3;6;9;18}
⇒n∈{0;3;6;15}
Tương ứng ta thu được m ∈ {−1;2;3;4}m∈{−1;2;3;4}
Vì m,n đều là số tự nhiên nên ta thấy chỉ có các cặp (m,n)=(2,3);(3,6);(4,15) thỏa mãn
\(m.n+3m=5n-3\)
\(\Leftrightarrow m\left(n+3\right)=5n-3\)
\(\Leftrightarrow m=\left(5n-3\right):\left(n+3\right)\)
\(\Leftrightarrow m=\left(5n+15\right):\left(n+3\right)-18:\left(n+3\right)\)
\(\Leftrightarrow m=\left[5\left(n+3\right)\right]:\left(n+3\right)-18:\left(n+3\right)\)
\(\Leftrightarrow m=5-18:\left(n+3\right)\)
\(\Leftrightarrow18=\left(5-m\right)\left(n+3\right)\)
\(\Leftrightarrow\left(5-m;n+3\right)\in\left\{\left(1;18\right);\left(2;9\right);\left(3;6\right);\left(6;3\right);\left(9;2\right);\left(18;1\right)\right\}\)
\(\Leftrightarrow\left(m;n\right)\in\left\{\left(4;15\right);\left(3;6\right);\left(2;3\right);\left(-1;0\right);\left(-4;-1\right);\left(-13;-2\right)\right\}\)
Mà \(m\), \(n\inℕ\)nên:
\(\left(m;n\right)\in\left\{\left(4;15\right);\left(3;6\right);\left(2;3\right)\right\}\).
Nếu m,n là các số tự nhiên thỏa mãn: 4m2+m=5n2+n thì m-n và 5m+5n+1 đều là số chính phương
4m2 + m = 5n2 + n <=> (5m2 - 5n2) + (m - n) = m2 <=> 5.(m - n).(m + n) + (m - n) = m2
<=> (m - n).(5m + 5n + 1) = m2 (1)
Gọi d = ƯCLN (m- n; 5m + 5n + 1)
=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d
=> m2 = (m - n).(5m + 5n + 1) chia hết cho d2
=> m chia hết cho d
lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d
10m chia hết cho d nên 1 chia hết cho d
=> m - n và 5m + 5n + 1 nguyên tố cùng nhau (2)
Từ (1)(2) => m - n; 5m + 5n + 1 đều là số chính phương
Ta có:
4m2 + m
= 5n2 + n
<=> (5m2 - 5n2) + (m - n) = m2
<=> 5.(m - n).(m + n) + (m - n) = m2
<=> (m - n).(5m + 5n + 1) = m2 (*)
Gọi d = ƯCLN (m- n; 5m + 5n + 1)
=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d
=> m2 = (m - n).(5m + 5n + 1) chia hết cho d2
=> m chia hết cho d
Ta lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d
10m chia hết cho d nên 1 chia hết cho d
=> m - n và 5m + 5n + 1 nguyên tố cùng nhau (**)
Từ (*)(**) => m - n; 5m + 5n + 1 đều là số chính phương
hok tốt