So sánh A và B biết
A = \(\frac{2012}{2013}+\frac{2013}{2014}\); \(B=\frac{2012+2013}{2013+2014}\)
So sánh 2 biểu thức A và B, biết rằng :
A=\(\frac{2012}{2013}\)+\(\frac{2013}{2014}\) và B= \(\frac{2012+2013}{2013+2014}\)
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~
A=\(\frac{2012}{2013}+\frac{2013}{2014}\) và \(\frac{2012+2013}{2013+2014}\)
so sánh nha!
giúp mk với!!!!
ta thấy:
\(\frac{2012}{2013}+\frac{2013}{2014}>\frac{2012}{2014}+\frac{2013}{2014}=\frac{2012+2013}{2014}>\frac{2012+2013}{2013+2014}\)
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
So sánh
\(A=\frac{2014^{2013}+1}{2014^{2013}-13}\)\(B=\frac{2014^{2012}+8}{2014^{2012}-11}\)
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
Cho A : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
B :\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
So sánh A và B
So sánh 2 phân số: A= \(\frac{2014^{2013}+1}{2014^{2014}+1}\)và B= \(\frac{2014^{2012}+1}{2014^{2013}+1}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
so sánh\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}vs4\)
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)
\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)
\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)
Ta có:
\(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)
\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)
\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )
\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Tham khảo nhé~
Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4
Ta có:
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)
Vì\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)
=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)
So sánh A và B , biết rằng :
A = \(-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)và B = \(\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
Cho A =\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2014}\)và B= \(\frac{2011+2012+2012}{2012+2103+2014}\)
Hãy so sánh A và B
Ta có: \(B=\frac{2011}{2012+2013+2014}+\frac{2012}{2012+2013+2014}+\frac{2013}{2012+2013+2014}\)
A= \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
Xét từng số hạng của A và B
\(\frac{2011}{2012}>\frac{2011}{2012+2013+2014}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013+2014}\)
\(\frac{2013}{2014}>\frac{2013}{2012+2013+2014}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}>\frac{2011+2012+2013}{2012+2013+2014}\)
\(\Rightarrow A>B\)
Đề bạn ghi có hơi sai chút nên tự tự sửa lại nha!