Tìm 2 a,b STN thỏa mãn :
a + 2b =48 và ƯCLN ( a,b) + 3.BCNN (a,b) =114
Giả sử d = (a;b). Khi đó ta có:
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
Tìm hai số tự nhiên a, b thỏa mãn điều kiện:
a + 2b = 48 và ƯCLN (a,b) + 3.BCNN(a,b) = 114
tìm 2 STN a và b biết
a+2b=48 và ƯCLN(a,b)+3.BCNN(a,b)=114
Tìm 2 số tự nhiên a,b thỏa mãn điều kiện : a+b = 48 và ƯCLN( a; b ) + 3* BCNN( a; b) = 114
1) Tìm 2 STN a, b thỏa mãn điều kiện
a+2b=48 và UCLN(a,b)+3.UCLN(a,b)=114
Mình sửa 3(a,b) thành 3.[a,b] hen
\(a+2b=48\) => a chia hết cho 2; 144 chia hết cho 3, 3[a,b] chia hết cho 3 =>(a,b) chia hết cho 3 => a chia hết cho 3
=> a chia hết cho 2 và 3 mà (2,3)=1 => a chia hết cho 6 mà a<48 => a thuộc {6,12,18,24,30,36}
a | 6 | 12 | 18 | 24 | 30 | 36 | 42 |
b | 21 | 18 | 15 | 12 | 9 | 6 | 3 |
(a,b) | 3 | 6 | 3 | 12 | 3 | 6 | 3 |
[a,b] | 42 | 36 | 90 | 24 | 90 | 36 | 42 |
(a,b) + [a,b] | 129 | 114 | 273 | 84 | 114 | 114 | 129 |
Tìm STN a, b thỏa mãn điều kiện:
a+2b=48 và (a,b)=[a,b]=114
Tìm hai số tự nhiên a, b biết : a + 2b = 48 và ƯCLN( a, b ) + BCNN ( a, b ) + 3.BCNN( a, b ) = 114
Bạn bấm vô " Câu hỏi tương tự " đi , ở đó có câu hỏi giống bạn có câu trả lời đó
~ Hok tốt ~
#JH
Đặt \(ƯCLN\left(a,b\right)=d\Rightarrow a=da_1,b=db_2\)
với \(\left(a_1,b_1\right)=1\)và \(BCNN\left(a,b\right)=d.a_1.b_1\)
\(a+2b=48\Rightarrow d\left(a_1+2b_1\right)=48\rightarrow48⋮d\)( 1 )
\(ƯCLN\left(a,b\right)+3.BCNN\left(a,b\right)=114\Rightarrow d\left(1+3a_1.b_1=114\right)\)
\(\Rightarrow114⋮d\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra d là ước của 6.
\(d\left(1+3a_1.b_1\right)=114\Rightarrow d⋮3.\)
\(\Rightarrow d=3;6\)
Thay d = 3 và d = 6 lần lượt vào \(d\left(1+3a_1.b_1\right)=144\)ta tìm được \(a_1,b_1\Rightarrow\)tìm được a,b.
Ta có bảng sau :
a | 36 | 12 |
b | 6 | 18 |
Vậy \(a\in\left\{36;12\right\}\); \(b\in\left\{6;18\right\}\)
tìm 2 số a,b TM:
a+2b=48 và ƯCLN(a,b)+3 . BCNN(a,b)=114
Tìm 2 số tư nhiên a và b thỏa mãn điều kiện
a + 2b = 48 và ƯCLN(a,b) + 3BNN(a,b) = 114