Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn
Xem chi tiết
Lượng Ledu
8 tháng 1 2019 lúc 20:58

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)

Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

Tuấn
9 tháng 1 2019 lúc 7:43

cảm ơn bạn

vũ minh châu
22 tháng 3 2020 lúc 11:06

cảm ơn bạn

Khách vãng lai đã xóa
Nguyễn Minh Vũ
Xem chi tiết
Phan Mỹ Quân
7 tháng 4 2018 lúc 13:59

Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100

Mà a1,a2,a3,...,a100 thuộc Z

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)

Vậy có ít nhất 2 số bằng nhau trong dãy số trên

Nguyễn Hà Trang
27 tháng 12 2018 lúc 14:53

còn cách nào khác k bạn

Trần Thu Ha
Xem chi tiết
Lumina
Xem chi tiết
Lumina
15 tháng 7 2021 lúc 14:25
Giúp mình với =(^•-•^)=
Khách vãng lai đã xóa
Nguyễn Việt Nga
Xem chi tiết
Đặng Minh quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 18:41

uses crt;

const fi='dulieu.inp'

var f1:text;

a:array[1..100]of integer;

n,i,t1,t2:integer;

begin

clrscr;

assign(f1,fi); reset(f1);

readln(f1,n);

for i:=1 to n do 

  read(f1,a[i]);

t1:=0;

t2:=0;

for i:=1 to n do 

 begin

if a[i]>0 then t1:=t1+a[i];

if a[i]<0 then t2:=t2+a[i];

end;

writeln('Tong cac so duong la: ',t1);

writeln('Tong cac so am la: ',t2);

close(f1);

readln;

end.

Nguyễn Tùng Dương
Xem chi tiết
romeo bị đáng cắp trái t...
Xem chi tiết
van anh ta
9 tháng 5 2016 lúc 20:39

                  TH1 : Trong cac so tren co 1 so ai chia hết cho 10 ( i = 1;2;3;...;9) 

                                SUY RA trong 10 số bất kì có 1 số chia hết cho 10        ( 1)

                         TH2 : Trong các số trên ko có số nào chia hết cho 10 .Khi đó các số dư khi chia cho 10 là 1;2;3;...;9 ( 9 chữ số ),với 10 số chia cho 10 nên ít nhất sẽ có 2 số chia cho 10 có cùng số dư ( theo nguyen li dirich le)

                            Suy ra hiệu của 2 số đó sẽ chia hết cho 10           (2)

                           Từ 1 và 2 suy ra thế nào cũng sẽ có 1 số bất kì hoac hiệu một số các số liên tiếp nhau trong dãy trên chia hết cho 10(DPCM)

                                  

lhrtgmjtkhgtrfdyr
Xem chi tiết