\(1-\left(1-\frac{1}{9}\right).\left(1-\frac{2}{9}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{100}{99}\right)\)
tính
\(\frac{\left(1+2+3+....+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63\times1,2-21\times3,6\right)}{1-2+3-4+....+99-100}\)
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).0}{1-2+3-4+...+99-100}\)
A= 0
KẾT QUẢ ĐÚNG 100%
63.1,2=75,6
21.3,6=75,6
=>63.1,2-21.3,6=0
nên biểu thức trên bằng 0
Tính Nhanh
\(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Ta có: \(63.1,2-21.3,6=0,9.7.10.1,2-21.3,6\)
\(=6,3.12-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.12-6,3.12\)
\(=0\)
\(\Rightarrow\frac{\left(1+2+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)0}{1-2+3-4+...+99-100}=0\)
Vậy \(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=0\)
Dãy tính trên có (63.1,2 - 21.3,6) =0 nên kết quả là 0
\(c=\frac{\left(1+2+3+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.1,2-2,1.3,6\right)}{1-2+3-4+....+99-100}\)
Ta có : \(6,3.1,2-2,1.3,6=0\)
Thay vào ta được C=0
mần rồi không cần bảo! dù sao cũng thanks
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
Mk ko biết lm nhưng cứ k thoải mái nha
SORRY
Giúp tui =((
\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Bài giải
\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=\frac{0}{1-2+3-4+...+99-100}\)
\(=0\)
Cam on ban nhee :3333
Bài làm :
Ta có :
\(63.1,2-21.3,6=0\)
Vậy biểu thức có giá trị là :
\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).0}{1-2+3-4+...+99-100}=0\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tính nhanh:
A= \(\frac{\left(1+2+3+....+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3.6\right)}{1-2+3-4+...+99-100}\)
\(A=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=0\)
Tính nhanh
\(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy : \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
nên kết quả dãy trên bằng 0
Cho M = \(\frac{\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\);
N = \(\frac{\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right)}{\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}\right)}\)
Tìm tỉ số phần trăm của M và N
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
\(M=\frac{1+(\frac{1}{99}+1)+(\frac{2}{98}+1)+(\frac{3}{97}+1)+...+(\frac{98}{2}+1)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{100\cdot(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2})}{(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})}=100\)
\(N=\frac{(1-\frac{1}{9})+(1-\frac{2}{10})+(1-\frac{3}{11})+...+(1-\frac{92}{100})}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(N=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}=\frac{8(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}{\frac{1}{5}(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}=40\)
\(M:N=\frac{100}{40}=250\%\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)