Tính nhanh
A=32/1x4+32/7x10+.......+32/97x100
Tính nhanh
a) 5/1x3 + 5/3x5 + 5/5x7 + ........ + 5/43x45
b) 6/1x4 + 6/4x7 + 6/7x10 + ...... + 6/97x100
\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)
Tính nhanh
A=3²/1x4+3² /4x7+3²/7x10+3²/11x12+3²/13x16+. .... +3²/97x100
Giúp mình với nhé
Tính nhanh:
\(\frac{1}{1x4}+\frac{1}{4x7}+\frac{1}{7x10}+...+\frac{1}{97x100}\)
1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100
= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)
= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)
= 1/3(1 - 1/100)
= 1/3*99/100
= 33/100
trả lời
=33/100
chúc bn
học tốt
A=3^2/1x4+3^2/4x7+3^2/7x10+...+3^2/97x100
\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)
\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\times\left(1-\frac{1}{100}\right)\)
\(A=3\times\frac{99}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)
tính tổng : 2/1x4 + 2/4.7 + 2/7x10 + ....+ 2/97x100 : giúp mình với
= 2/3 x ( 3/1x4 + 3/4.7 + 3/7x10 + ....+ 3/97x100)
= 2/3 x (1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
= 2/3 x (1- 1/100)
= 2/3 x 99/100
= 33/50
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{2}{3}.\frac{99}{100}=\frac{198}{300}=\frac{33}{50}\)
Tao học lớp 6 nè. Kiến thức này ở đâu, trường nào dạy vậy
A=1/1x4+1/7x10+......+1/97x100
Giúp mk với ai đng mk tick :)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+.....+\frac{1}{97.100}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\)
\(3A=1-\frac{1}{100}\)
\(3A=\frac{99}{100}\)
\(A=\frac{99}{100}:3\)
\(A=\frac{33}{100}\)
A=1/1x4+1/4x7+.....+1/97x100
A=1x3/1x4x3+1x3/4x7x3+....+1x3/97x100x3
A=1/3x(3/1x4+3/4x7+...+3/97x100)
A=1/3x(1-1/4+1/4-1/7+.....+1/97-1/100)
A=1/3x(1-1/100)
A=1/3x99/100
A=33/100
1/1x4 + 1/4.7 + 1/7x10 + ....+ 1/97x100 =x/2
A = 1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100 = (4-1)/1.4 + (7-4)/4.7 + (10-7)/7.10 + ... + (100-97)/97.100
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100 = 1 - 1/100 = 99/100
=> A = 33/100
A = x/2 => x = 2.A = 33/50
s=1/1x4+1/4x7+1/7x10+...+1/94x97+1/97x100
\(S=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{94\times97}+\frac{1}{97\times100}\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\frac{99}{100}\)
\(S=\frac{33}{100}\)
D=\(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+.......+\frac{3}{97x100}\)
mk đang cần gấp
\(D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(D=1-\frac{1}{100}\)
\(D=\frac{99}{100}\)
tại sao lại như thế?