Phương trình 3x + 5y = 501 có bao nhiêu cặp nghiệm (x;y) với x,y nguyên dương
C1: Phương trình x + 1/x-1= 2x-1/x-1 có bao nhiêu nghiệm A vô số nghiệm B 1 C 0 D 2 C2: nghiệm của phương trình 3x+3/x^2-1 +4/x-1 =3 là A -1 hoặc 10/3 B -1 C -10/3 D 1 hoặc -10/3
Cho các phát biểu sau:
(1): Phương trình y = x 4 - 3 x 3 + 1 = 0 có nghiệm trên khoảng - 1 ; 3 ?
(2): Phương trình sau: cos 2 x = 2 sin x - 2 có ít nhất hai nghiệm trong khoảng - π 6 ; π
(3): y = x 5 - 5 x - 1 = 0 có ít nhất ba nghiệm
(4): Phương trình x 3 - 3 x + 1 = 0 có ít nhất 2 nghiệm
trên - 2 ; 2 . Hỏi có bao nhiêu phát biểu đúng
A. 4
B. 2
C. 3
D. 1
Cho các phát biểu sau:
(1) Phương trình x 4 - 3 x 3 + 1 = 0 có nghiệm trên khoảng (-1;3)?
(2) PT sau: cos2x = 2sinx-2 có ít nhất hai nghiệm trong khoảng ( - π 6 ; π )
(3) x 5 - 5 x - 1 = 0 có ít nhất ba nghiệm
(4): Phương trình x 3 - 3 x + 1 = 0 có ít nhất 2 nghiệm trên (-2;2)
Hỏi có bao nhiêu phát biểu đúng
A. 4
B. 2
C. 3
D. 1
Phương trình sau có bao nhiêu nghiệm : x = -x
trị tuyệt đối (5x+2) = - trị tuyệt đối (5x-2)
Phương trình 1) có nghiệm duy nhất là 0
2) Ta có:
\(\hept{\begin{cases}\left|a\right|\ge0\forall a\\-\left|b\right|\le0\forall b\end{cases}}\)
Mà \(\left|5x+2\right|=-\left|5x-2\right|\)
=> \(\left|5x+2\right|=\left|5x-2\right|=0\)
=> \(5x+2=5x-2=0\)
=> Pt vô nghiệm
cho phương trình x^2+6x+m=0
a) tìm m để phương trình có 2 nghiệm phân biệt
b) xác định m để phương trình có 2 nghiệm x1:x2 thỏa mãn x1=2x2
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
cho phương trình: x^2-mx-m+11=0
a,phương trình có 2 nghiệm x1,x2 khi m=8
b,phương trình có 2 nghiệm thỏa mãn x1^2-(m-2)x1+3x2+x1x2=1
(m-2)x\(^4\) -3x\(^2\)+m+2=0
tìm m để phương trình có 1 nghiệm, 2 nghiệm, 3 nghiệm, 4 nghiệm, vô nghiệm.
Hướng dẫn:
\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)
TH1: m - 2 = 0 <=> m = 2
khi đó phương trình trở thành: \(-3x^2+4=0\)
<=> \(x=\pm\frac{2}{\sqrt{3}}\)
TH2: m khác 2
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)
có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)
+) Phương trình (1) vô nghiệm <=> phương trình (2) vô nghiệm
<=> \(\Delta\)<0 ( tự giải ra)
+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không )
+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương
Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)
<=> m = - 2
Thay vào phương trình (2) : \(-4t^2-3.t=0\)
<=> \(t\left(4t+3\right)=0\)
<=> t = 0
=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm
+) Phương trình (1) có 2 nghiệm <=>phuowng trình (2) có 2 nghiệm trái dấu
<=> m + 2 < 0 <=> m < - 2
Kết hợp với TH1 nữa nhé!
+) Phương trình (1) có 4 nghiệm
<=> phương trình 2 có 2 nghiệm dương
<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)
Cho phương trình : 6x + 4y = 4
Cặp số ( x ; \(\frac{13}{2}\)) là một nghiệm phương trình khi x = ?
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!