Cho x,y nguyên dương thỏa mãn: 1003a + 2b=2008 . Chứng tỏ a chia hết cho 2
Cho x, y nguyên dương thỏa mãn: 1003a + 2b = 2008. Chứng tỏ a 2.
Cho x, y là hai số nguyên dương thỏa mãn: 1003x + 2y = 2008.
a) Chứng tỏ rằng x chia hết cho 2?
b) Tìm x , y ?
Gíup tui ik tui tick cho
Bạn tham khảo :
a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.
Mà 1003 × số chẵn = số chẵn nên x là số chẵn.
Vậy x chia hết cho 2
b) Để 1003x là số chẵn < 2008 thì x= 2
Suy ra y= 1
Vậy x= 2, y= 1
Nguồn : H.ọ.c24.vn
a/1003.x+2.y=2008
Ta có 2y chia hết cho 2
2008 chia hết cho 2
==>1003.x chia hết cho 2
Mà 1003 không chia hết cho 2
==> x chia hết cho 2
b/Do x,y nguyên dương
==> 1003.x =< 2008
x=<2
Nếu x=1
1003.1+2y=2008
1003+2y=2008
2y=2008-1003
2y=1005
y=1005:2
y=502,5
Mà y là số nguyên dương
Nên trường hợp x=1;y=502,5 không thoản mãn đề bài.
Nếu x=2
1003.2+2.y=2008
2006+2y=2008
2y=2008-2006
2y=2
y=2:2
y=1
Vậy x=2;y=1
a.1003.x+2.y=2008
Ta có 2y chia hết cho 2
2008 chia hết cho 2
==>1003.x chia hết cho 2
Mà 1003 không chia hết cho 2
==> x chia hết cho 2
b/Do x,y nguyên dương
==> 1003.x =< 2008
x=<2
Nếu x=1
1003.1+2y=2008
1003+2y=2008
2y=2008-1003
2y=1005
y=1005:2
y=502,5
Mà y là số nguyên dương
Nên trường hợp x=1;y=502,5 không thoản mãn đề bài.
Nếu x=2
1003.2+2.y=2008
2006+2y=2008
2y=2008-2006
2y=2
y=2:2
y=1
Vậy x=2;y=1
cho x,y nguyên dương thỏa mãn 1003x + 2y = 2008
a ) Chứng minh rằng x chia hết cho 2
b ) Tìm x,y
a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.
Mà 1003 × số chẵn = số chẵn nên x là số chẵn.
Vậy x chia hết cho 2
b) Để 1003x là số chẵn < 2008 thì x= 2
Suy ra y= 1
Vậy x= 2, y= 1
cho x;yl là số nguyên dương thỏa mãn 1003. +2.y = 2008
a, chứng tỏ x : 2
tìm x ;y
a) Ta có: \(1003x+2y=2008\)
Vì 2y và 2008 đều chẵn
=> 1003x chẵn => x chẵn
=> x chia hết cho 2
b) Xét x = 2 => \(2006+2y=2008\Rightarrow y=1\left(tm\right)\)
Nếu \(x\ge4\Rightarrow ktm\)
Vậy x = 2 và y = 1
1.Cho x,y là số nguyên dương thỏa mãn:
1003x+2y=2008
a/Chứng tỏ rằng x chia hết cho 2
b/Tìm x,y
2.Chứng minh rằng:
2^0+2^1+2^2+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31 nếu n là 1 số nguyên dương bất kì.
3.Tìm các số nguyên x sao cho:
a/ 3x+23 chia hết cho x+4
b/x^2+3x-3 là B(x-2)
4.Tìm x,y thuộc Z biết:
3x+4y-x.y=15
Giúp mình với nha mình cần gấp ^_^ ahihihihi!
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.