Chứng Minh Rằng:
\(S=16^5+2^{15}\) chia hết cho 33
S= 165+215. Chứng minh rằng s chia hết cho 33
Chứng minh rằng 16 mũ 5 + 2 mũ 15 chia hết cho 33
16 mũ 5 +2 mũ 15=1081344
1081344:33=32768.
chia hết thây.tính thử lại bằng máy tính xem!
ta có :=(24)5 + 215
= 220 + 215
= 215.(25 + 1)
= 215.33 chia hết cho 33
vậy A chia hết cho 33 ( điều phải chứng minh)
Chứng minh S=165+215chia hết cho 33
Chứng tỏ rằng : S=165 + 215 chia hết cho 33
Chứng minh : S = 165 + 215 chia hết cho 33
#)Giải :
\(S=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\) chia hết cho 33
\(\Rightarrow S⋮33\left(đpcm\right)\)
ta thấy 165 = 220
=> 220 + 215
= 215(25 + 1)
= 215 x 33
Chứng minh rằng:
a, 7^6+7^7 chia hết cho 55
b, 16^5+2^15 chia hết cho 33
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
câu a sai đề, bạn thử bấm máy xem chia hết ko
câu b
16^5 chia 33 dư 1
2^15 chia 33 dư 32
vậy 16^5 + 2^15 chia hết cho 33
Chứng minh rằng
S=5+52+53+.....+5100chia hết cho 6
S1=2+22+23+....+2100chia hết cho 31
S2=165+215 chia hết cho 33
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
1 Chứng minh rằng
S=5+52+53+......+5100 chia hết cho6
S1=2+22+23+......+2100 chia hết cho 31
S2=165+215 chia hết cho 33
chứng minh rằng 16^2+2^15 chia hết cho 33
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
Tham khảo