M là một số chính phương không nếu :M=1+3+5+...+(2n-1) (Với n là số tự nhiên và n khác 0)
M có phải là số chính phương không nếu: M=1+3+5+....+(2n-1) (với n thuộc N, n khác 0
M có là một số chính phương không nếu :
M=1+3+5+...+(2n-1) ( Với n thuộc N , n khác 0)
Giúp mình nha!
Số số hạng của M là : [(2n-1)-1]: 2+1=n^2
Tổng M là:(2n-1+1).n:2=n^2
=>M là số chính phương
M có là 1 số chính phương không nếu:
M = 1 + 3 + 5 + ..... + ( 2n -1 ) ( Với n thuộc N, n khác 0 )
M=1+3+5+...+(2n-1)
=[(2n-1)+1]×n/2
=2n^2/2=n^2
=> M là số chính phương.
Trong tổng trên có số số hạng là :
( 2n - 1 - 1 ) : 2 + 1 = n ( số hạng )
=> M = ( 2n - 1 + 1 ) . n/2 = 2n.n/2 = n^2
=> M = số chính phương
Hok tốt ^^
1.Tìm 2 số tự nhiên a,b biết:
a+6=b.(a-1)
2.M có phải là số chính phương không nếu
M=1+3+5+......+(2n-1)
(Với n thuộc N;n khác 0
a+6=b.(a-1)
\(\Rightarrow\)(a-1)+7=b.(a-1)
\(\Rightarrow\)b.(a-1)-(a-1)=7
\(\Rightarrow\)(a-1).(b-1)=7
\(\Rightarrow\)a-1=\(\frac{7}{b-1}\)
\(\Rightarrow\)b-1\(\in\){1:7}
\(\Rightarrow\)b\(\in\){2:8}
\(\Rightarrow\)a-1\(\in\){1;7}
\(\Rightarrow\)a\(\in\){2;8}
vay neu a=2 thi b=8; a=8 thi b=2
so so hang cua M la \(\frac{\left[\left(2n-1\right)-1\right]}{2}\)+1=n-1-1+1= n-1 (so hang)
tong M=\(\frac{2n-1}{2}\). (n-1)
= (n-1).(n-1)=\(^{\left(n-1\right)^2}\)
CMR
M=1+3+5+......+(2n-1) là 1 số chính phương với n là số tự nhiên khác 0
AI NHANH MIK TIK
THANKS
Đây
Ta có: \(M=1+3+5+...+\left(2n-1\right)\)
Suy ra : \(M=\left[\left(2n-1-1\right):2+1\right]\cdot\frac{2n-1+1}{2}\)
Suy ra \(M=\left[\left(2n-2\right):2+1\right]\cdot\frac{2n-1+1}{2}\)
Tức: \(M=n\cdot n=n^2\)
Vậy M là số chính phương
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
M có là một số chính phương không nếu:
M= 1+3+5+...+ (2n+1) (Với n thuộc N, n khác 0)
giúp mình giải nhanh bài này, rồi mình tick cho
chỉ dùm mình cách làm
M có là một số chính phương không nếu:
M = 1 + 3 + 5 +…+ (2n-1) (Với n ko thuộc N , n khác 0)
Cảm ơn Mn!
M có là số chính phương ko nếu :
M = 1+3+5+......+ (2n+1) ( với n thuộc N, n khác 0)
M= 1+3+5+...+(2n-1)
=[(2n-1)+1]×n]/2
=2n^2/2=n^2
=> M là số chính phương.