\(\frac{108-x}{+92}+\frac{107-x}{93}+\frac{106-x}{94}+\frac{105-x}{95}+4=0\)
giải pt hộ mk nhé
Giải pt sau:
\(\frac{99-x}{101}\)+\(\frac{97-x}{103}\)+\(\frac{95-x}{105}\)+\(\frac{93-x}{107}\)= -4
\(\left(\frac{99-x}{101}+1\right)+\left(\frac{97-x}{103}+1\right)+\left(\frac{95-x}{105}+1\right)+\left(\frac{93-x}{107}+1\right)=-4+4\)
\(\frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\left(200-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\) mà \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
k nha
\(\left(\frac{99-x}{101}+1\right)+\left(\frac{97-x}{103}+1\right)+\left(\frac{95-x}{105}+1\right)+\left(\frac{93-x}{107}+1\right)=-4+4\)
\(\frac{110-x}{101}+\frac{110-x}{103}+\frac{110-x}{105}+\frac{110-x}{107}=0\)
\(\left(110-x\right).\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Rightarrow110-x=0\)( vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\) )
\(\Rightarrow x=110\)
vậy x=110
Giải phương trình sau
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
ai làm đc mk tick cho,mk đag cần gấp
Ta có: \(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow\frac{99-x}{101}-1+\frac{97-x}{103}-1+\frac{95-x}{105}-1+\frac{93-x}{107}-1=-4+4\)
\(\Leftrightarrow\frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow\left(200-x\right).\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
=> 200 - x = 0
=> x = 200
Vậy x = 200
\(\frac{x-1}{95}+\frac{x-2}{94}=\frac{x-3}{93}+\frac{x-4}{92}\)
\(\frac{x-1}{95}+\frac{x-2}{94}=\frac{x-3}{93}+\frac{x-4}{92}\)
\(\Rightarrow\frac{x-1}{95}+\frac{x-2}{94}-\frac{x-3}{93}-\frac{x-4}{92}=0\)
\(\Rightarrow\left(\frac{x-1}{95}-1\right)+\left(\frac{x-2}{94}-1\right)-\left(\frac{x-3}{93}-1\right)-\left(\frac{x-4}{92}-1\right)=0\)
\(\Rightarrow\frac{x-96}{95}+\frac{x-96}{94}-\frac{x-96}{93}-\frac{x-96}{92}=0\)
\(\Rightarrow\left(x-96\right)\left(\frac{1}{95}+\frac{1}{94}-\frac{1}{93}-\frac{1}{92}\right)=0\)
\(\Rightarrow x-96=0\left(vì\frac{1}{95}+\frac{1}{94}-\frac{1}{93}-\frac{1}{92}\ne0\right)\)
\(=>x=96\)
cho mình hỏi là viết phân số làm sao vậy
BÀI 1:TÌM X
a)\(\frac{X}{108}=\frac{-7}{9}\times\frac{5}{6}\)
b)\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
a)\(\frac{x}{108}=\frac{-7}{9}.\frac{5}{6}\)
\(\frac{x}{108}=\frac{-35}{54}\)
\(\frac{x}{108}=\frac{-70}{108}\)
\(x=-70\)
b)
Giải phương trình sau
a,\(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
b,\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
c,\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
a, \(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
\(2\left(\frac{11x+4}{12}\right)-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-\frac{24}{12}+\frac{2x}{12}=0\)
\(\frac{44x+8-24+2x}{12}=\frac{46x-16}{12}=0\)
\(\Leftrightarrow46x-16=0\)
\(\Leftrightarrow46x=16\Rightarrow x=\frac{8}{23}\)
Vậy nghiệm của pt là x=8/23
k mk
Tìm x, biết: \(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
\(\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)+\left(\frac{x+7}{93}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+9}{91}+1\right)=-5+5=0\)
1)Tìm GTNN của A = 5x^2 + 5y^2 + 6x - 6y - 2xy
2 )\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}=-4\)Tìm x
(109-x)/91+(107-x)/93+(105-x)/95+(103-x)/97=-4
[(109-x)/91 +1]+[(107-x)/93 +1]+[(105-x)/95 +1]+[(103-x)/97 +1]-4=-4
(109+91-x)/91+(107+93-x)/93+(105+95-x)/95+(103+97-x)/97=-4+4
(200-x)/91+(200-x)/93+(200-x)/95+(200-x)/97=0
(200-x)(1/91+1/93+1/95+1/97)=0
Ma : 1/91+1/93+1/95+1/97\(\ne\)0
=>200-x=0
=>x=200
Giải phương trình:
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\frac{x+1}{94}+1+\frac{x+2}{93}+1+\frac{x+3}{92}+1=\frac{x+4}{91}+1+\frac{x+5}{90}+1+\frac{x+6}{89}+1\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
\(\Leftrightarrow x+95=0\).Do \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Leftrightarrow x=-95\)
(x+1)/94 + ( x+2)/93 + ( x+3)/92.......
= ................ + ( x+6)/89
<=> (x+1)/94 + 1 + ( x+2)/93 +1 .........
=.............. cộng 1 nhá
<=> (x+95)/94 + ( x+96) / 93 + ( x+95)/92
= ( x+95)/91 + ( x+95)/90 + ( x+95)/89
<=> ( x+95) ( 1/94 +1/93 +1/92 )
= ( x+95) ( 1/91 +1/90 +1/89)
<=> ( x+95) ( 1/94 +1/93 +1/92 - 1/91 - 1/90 - 1/89 )
<=> x+95 =0
<=>x = -95
Vậy :x = -95