Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Văn Anh Vũ
Xem chi tiết
Dũng Super
29 tháng 6 2018 lúc 8:53

Từ bé đến lớn : 13/14;14/15;15/16;16/17;17/18;18/19;19/20

Chúc bạn học tốt nhé!!!

Trần Hà Mi
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Đoàn Thị Lệ
12 tháng 3 2017 lúc 10:02

mình học toán cảm thấy nhức óc lắm, hoa mắt luôn oho

Khang khong manh
9 tháng 3 2017 lúc 20:53

Ta thấy:

1/11<1/4

1/12<1/4

.......

1/20<1/4

Suy ra ta có:

Bùi Bảo Châu
9 tháng 3 2017 lúc 20:57

\(\dfrac{1}{11}>\dfrac{1}{20};\dfrac{1}{12}>\dfrac{1}{20};....;\dfrac{1}{19}>\dfrac{1}{20};\dfrac{1}{20}=\dfrac{1}{20}\)

\(\Rightarrow s>\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{20}.........+\dfrac{1}{20}\)(20 phân số)

\(\Rightarrow S>\dfrac{10}{20}=\dfrac{1}{2}\)

Vậy \(S>\dfrac{1}{2}\)

Trần Đoàn Nam Phương
Xem chi tiết
Phùng Quang Thịnh
21 tháng 4 2017 lúc 6:21

* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19  ( vì ta cộng với 19 số 1 nên phải trừ 19 )
\(\frac{20}{1}\)+  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)- 19
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+   \(\frac{20}{18}\)+  \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+ ...+   \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)+  \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+...+  \(\frac{1}{17}\)+  \(\frac{1}{18}\)+  \(\frac{1}{19}\)+  \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)=  \(\frac{1}{20}\)

Lê Tài Bảo Châu
12 tháng 5 2019 lúc 21:39

Phùng Quang Thịnh biến đổi sai 1 chỗ kìa 

-19 = \(\frac{20}{20}-20\)chứ mà bạn

Nguyễn Văn Công Hà
12 tháng 5 2019 lúc 21:46

thank Lê Tài Bảo Châu nhá

Xem chi tiết
zZz Cool Kid_new zZz
27 tháng 2 2019 lúc 19:56

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

Huỳnh Quang Sang
28 tháng 2 2019 lúc 19:34

Ta có các phân số : \(\frac{1}{11};\frac{1}{12};\frac{1}{13};\frac{1}{14};\frac{1}{15};\frac{1}{16};\frac{1}{17};\frac{1}{18};\frac{1}{19}>\frac{1}{20}\)

Do đó : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)có 10 phân số \(\frac{1}{20}\)

\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\)

\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)

Vậy : \(S>\frac{1}{2}\)

Tran Hoa Tham
Xem chi tiết
Yuru Camp
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 5 2019 lúc 7:30

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)

\(\Rightarrow A< B\)

Duc Loi
27 tháng 5 2019 lúc 7:36

\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)

\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)

\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)

Thanh Tùng DZ
27 tháng 5 2019 lúc 7:38

\(A=\frac{17^{18}-1}{17^{20}-1}\)

\(17^2A=\frac{17^2\left(17^{18}-1\right)}{17^{20}-1}=\frac{17^{20}-17^2}{17^{20}-1}=\frac{17^{20}-1-288}{17^{20}-1}=1-\frac{288}{17^{20}-1}\)

\(B=\frac{17^{17}-1}{17^{19}-1}\)

\(17^2B=\frac{17^2\left(17^{17}-1\right)}{17^{19}-1}=\frac{17^{19}-17^2}{17^{19}-1}=\frac{17^{19}-1-288}{17^{19}-1}=1-\frac{288}{17^{19}-1}\)

Ta có : \(\frac{288}{17^{20}-1}< \frac{288}{17^{19}-1}\)nên \(-\frac{288}{17^{20}-1}>-\frac{288}{17^{19}-1}\)

\(\Rightarrow A>B\)

Đông joker
Xem chi tiết
Trần Thảo Nguyên
Xem chi tiết
Hồ Thu Giang
29 tháng 7 2015 lúc 8:36

Xét tử:

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{19}{1}\)

\(\left(1+\frac{1}{19}\right)+\left(1+\frac{2}{18}\right)+\left(1+\frac{3}{17}\right)+.....+\left(1+\frac{18}{2}\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+.....+\frac{20}{2}+1\)

\(\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{2}\)

\(20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)\)

Thay vào, ta có:

D = \(\frac{20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)

=> D = 20