Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
romeo bị đáng cắp trái t...
Xem chi tiết
nguyễn thị thùy dung
25 tháng 9 2018 lúc 11:28

các bạn giúp mình nhé !

Danhkhoa
Xem chi tiết
Nguyễn Thị Giang
Xem chi tiết
Nguyen Minh Ha
Xem chi tiết
Nguyễn Triệu Yến Nhi
24 tháng 4 2015 lúc 18:29

 

Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}

Kudo Shinichi
Xem chi tiết
๖Fly༉Donutღღ
Xem chi tiết
Thanh Tùng DZ
31 tháng 5 2017 lúc 8:25

a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :

A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :

A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)

b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :

A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :

A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)

Vũ Dương
31 tháng 5 2017 lúc 9:36

bn là râu trắng à

Nguyễn Thái Sơn
Xem chi tiết
Hỏa Hỏa
Xem chi tiết
Ngô Phương Linh
Xem chi tiết