Tính
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
Tính tổng:
A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
NHANH NHÁ CÁC BẠN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Tính A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\) KHÔNG LÀM LINH TINH
Làm tiếp
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
A=\(1-\frac{1}{100}\)
A=\(\frac{100}{100}-\frac{1}{100}\)
A=\(\frac{99}{100}\)
A= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +...+ 99-98/98.99 + 100-99/99.100
A= 2/1.2 - 1/1.2 + 3/2.3 - 2/2.3 + 4/3.4 - 3/3.4 +...+ 99/98.99 - 98/98.99 + 100/99.100 - 99/99.100
A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/98 - 1/99 + 1/99 - 1/100
A= 1 - 1/100
A= 99/100
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
Ta có công thức:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
Áp dụng công thưc trên ta có
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Tìm x
x - \(\left(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{100}\)
Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)
=\(x-\frac{1}{100}\)
Dễ dàng tìm được
\(x-\frac{1}{100}=\frac{1}{100}\)
\(x=\frac{1}{50}\)
Tính các biểu thức sau
A=\((1+\frac{1}{1.3})\)\((1+\frac{1}{2.4})\)...\((1+\frac{1}{99.100})\)
B=\((1-\frac{1}{4})\)\((1-\frac{1}{9})\)...\((1-\frac{1}{225})\)
C=1.2+2.3+3.4+...+98.99
D=(1.99+2.99+3.99+...+99.99)-(1.2+2.3+3.4+...+98.99)
tính :
\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+..........+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\)
Ta có TQ: (phân số đầu - phân số cuối) : khoảng cách
Áp dụng vào bài toán => (\(\frac{1}{1}\)-\(\frac{1}{100}\)) : 1 =\(\frac{99}{100}\)
lý dó 1 là khoảng cách vì cách lm như sau: 2-1=1
3-2=1
.....
100-99=1
=> khoảng cách là 1
Chúc bn hk tốt nhé!!
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
Tính nhanhB=\(-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-.....-\frac{1}{98.99}-\frac{1}{99.100}\)
Giups mình với mình đang cần gấp ai nhanh nhất tớ sẽ tích cho bạn đó có kèm cách làm nhé
\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\
=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\
=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\
=-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)
<br class="Apple-interchange-newline"><div></div>B=−11.2 −12.3 −13.4 −...−198.99 −199.100 \\ =−(11.2 +12.3 +13.4 +...+198.99 +199.100 ) \\ =−(1−12 +12 −13 +13 −14 +...+198 −199 +199 −1100 ) \\ =−(1−1100 )=−99100
câu 1 viết chương trình tínhM= \(1+\frac{1}{1.2}+\frac{2}{2.3}+\frac{3}{3.4}+....+\frac{98}{98.99}+\frac{99}{99.100}\)
program an_danh;
uses crt;
var kq:real;
i:integer;
begin
clrscr;
kq:= 1;
for i:= 1 to 99 do kq:= kq + (i / (i * (i + 1)));
write('M= ',kq:0:10);
readln
end.
program an_danh;
uses crt;
var kq:real;
i:integer;
begin
clrscr;
kq:= 1;
for i:= 1 to 99 do kq:= kq + (i / (i * (i + 1)));
write('M= ',kq:0:10);
readln
end.
aai giúp mình với :((
So sánh :
\(A=\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{98.99^2}+\frac{1}{99.100^2}\) và \(B=\frac{5}{12}\)