cmr đa thức sau không có nghiệm với mọi số thực x f(x)=x^2-x+5
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a)x.f(x + 1) - ( x + 2). f( x) = 0 (1)
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0.
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1.
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).
Cách khác:
a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b) xét x=2 ta có:(2^2-4). f(2)=(2-1).f(2+1)
0=1.f(3). suy ra f(3)=0. vậy 3 là nghiệm
xét x=1 và x=2
c) Tương tự
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x.
CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x.
CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
a> CMR : Đa thức x * f(x+1) = (x + 2) * f(x) có ít nhất 2 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
Ai làm được mình like 5 cái cho
b) Thay x = 0
\(0.f\left(1\right)=2f\left(0\right)\Rightarrow f\left(0\right)=0\)
Thay x = -2\(-2f\left(-1\right)=0.f\left(-2\right)\Rightarrow f\left(-1\right)=0\)
Vậy phương trình trên có ít nhất 2 nghiệm