Chứng minh rằng a/b=c/d thì a/b="a+c"/b+d và a/b="a-c"/b-d
Chứng minh rằng a/b=c/d thì a/b="a+c"/b+d và a/b="a-c"/b-d
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
chứng minh rằng : (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/c=b/d
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]\)
\(=-\left(b+c\right)^2+\left(a+d\right)^2\) ( 1 )
\(\left(a+b-c-d\right)\left(a-b+c-d\right)=\left(b-c\right)^2-\left(a-d\right)^2\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
\(b^2+2bc+c^2-a^2-2ad-d^2=a^2-2ad+d^2-b^2+2bc-c^2\)
\(4ad=4ac\Rightarrow ad=bc\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)( đpcm )
Chứng minh rằng : (a+b+c-d)(a-b-c-d) = (a+b-c+d)(a-b+c+d) thì (a+b)/(a-b) = (c-d)/(c+d)
Cho hai phân số a/b và c/d (a,b,c,d > 0). Chứng minh rằng nếu a/b > c/d thì b/a < d/c
http://olm.vn/hoi-dap/question/103481.html
Cho hai phân số a/b và c/d ( a,b,c,d > 0 ) . Chứng minh rằng nếu a/b > c/d thì b/a<d/c
Chứng minh rằng nếu:
(a + b + c + d) (a - b - c + d) = (a - b + c - d) (a + b - c - d)
thì\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
(a, b, c, d khác 0)
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)
Mấy thánh học ơi giúp tôi với:
Chứng minh rằng a/b=c/d thì a/b='a+c'/'b+d' và a/b='a-c'/'b-d'
a gặp nhiều rồi , nhưng dài lắm chú ak