\(Cho\)\(A=\frac{2n+5}{n-1}\)\(\left(n\ne1,n\inℕ^∗\right)\)
Tìm n để A là Số Nguyên Tố.
Tìm các số nguyên n để biểu thức sau là một số nguyên tố
\(A=\frac{2n^2+3n-1}{n-1}\left(n\ne1\right)\)
Tìm các số nguyên n để biểu thức sau là một số nguyên tố
\(A=\frac{2n^2+3n-1}{n-1}\left(n\ne1\right)\)
mk ko giỏi mấy cái này bn ak!!!! #_#
5756876980
Tìm n thuộc N* sao cho A=\(\frac{1.3.5.7...\left(2n-1\right)}{n^n}+2n\) là số nguyên tố
Cho M=\(\frac{4n+3}{n-1}\left(n\in Z,n\ne1\right)\)tìm n để M có giá trị là một số nguyên
Cho A=\(\frac{2n+5}{n-1}\)(n thuộc N*, n khác 1). Tìm n để A là số nguyên tố.
\(A=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để A nguyên thì \(\frac{7}{n-1}\in Z\) Hay \(n-1\inƯ\left(7\right)\)
Bạn tự giải tiếp nk
Bài 1 : Cho \(A=\frac{n\left(n+1\right)}{2}\)và \(B=2n+1\left(n\inℕ^∗\right)\). TÌM ƯCLN ( A , B ) ?
Gọi UCLN (A;B) là : d
=> \(A⋮d\)
\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)
\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)
\(\Rightarrow2n+2⋮d\)
\(\Rightarrow2n+2-2n-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy...............
So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
a)A=n/n+1=n/n+0/1
B=n+2/n+3=n/n + 2/3
ta có:0<2/3
=>A<B
a) Tìm các giá trị \(n\inℕ\)để \(A=\frac{2n+5}{3n+1}\)có giá trị là số tự nhiên
b)Tìm các giá trị \(n\inℤ\)để \(A=\frac{2n+5}{3n+1}\)có giá trị là số nguyên
Tìm tất cả các số tự nhiên n để P=\(\left(n^2-2n+1\right)\left(n^2-2n+2\right)+1\)là số nguyên tố
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2