So sánh:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)với 1
So sánh
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) với 1
Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>1\)
Chúc bạn học tốt !!!
a/b+c > a/a+b+c (1)
b/c+a > b/a+b+c (2)
c/a+b > c/a+b+c (3)
Lấy (1)+(2)+(3) ta có
a/b+c + b/c+a +c/a+b < 1
Ta có:
\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+b+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+c+b}+\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
Ta thấy \(\frac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
Vậy......
Cô nàng Vân Anh cũng hỏi câu này à?? Lạ nhé!!
\(ChoS=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}biếta+b+c=7và\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)Hãy so sánh S với\(1\frac{8}{11}\)
Giúp mình với nha! đây là bài trong bộ đề thi hsg lớp 6 của mình đó.
So sánh tổng \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) với 1
bạn thiếu đề đó mà kết quả là bằng nhau
Mà đây là lớp 4 đó
Ai tích mk mk tích lại cho
So sánh M = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1 ta được M...1
Co minh biet ket qua roi ban HiHI
mk chi cac bạn tuyet chieu;
nhung bai toan dang nay mk thuong lay so cu the nhu 1;2;3 .... thay vao se doan dc kq vi violympic thoi gian thi co hạn
cac ban co dong y k
;
Cho a,b,c>0. So sánh \(m=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1
kich mk di
diem mk thap qua
thank you
Ta có: m=\(\frac{a}{c+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
= 1/2 <1
So sánh M= \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)với 1 ta được M___1
Cho a,b,c là các số tự nhiên khác 0.Hãy so sánh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với số 1
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
so sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
Ta có :\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)và \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}<\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
So sánh tổng sau với 1 và 2:
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)