cho hàm số f(x) thảo mãn f(a+b)=f(a)+f(b) với mọi a;b và f(1) =1
Tính f(2019)
cho hàm số f(x) thảo mãn f(a+b)=f(a)+f(b) với mọi a;b và f(1) =1
Tính f(2019)
Ta có : \(y=f\left(a\right)=1a\) và \(y=f\left(b\right)=1b\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\left(a+b\right)\) \(\left(1\right)\)
\(\Rightarrow y=f\left(a+b\right)=1\left(a+b\right)\) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow f\left(a+b\right)=f\left(a\right)+f\left(b\right)\Rightarrowđpcm\)
Cho hàm số f(x) xác định với mọi x thuộc R thỏa mãn f(a+b) = f (a.b) với mọi a, b thuộc R và f(-1/2)=-1/2. Tính f(2016)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
Cho hàm số y = f(x) xác định với mọi x thuộc z (x >0) và thỏa mãn f(1)=1, f(a+b)= f(a) +f(b) - 2f(ab).
Tính f(2014) và f(2015)
Cho hàm số f ( x ) = ln e x + m Có bao nhiêu số thực dương m để f'(a) + f'(b)=1 với mọi số thực a, b thỏa mãn a + b = 1
A. 1
B. 2
C. Vô số
D. 0
Cho hàm số f(x) xác định với mọi x thỏa mãn f (a+b) = f (a.b) và f (-1/2) = -1/2 . Tính f ( 2016)
Với mọi x thỏa mãn: f( a + b ) = f (ab)
=>f( 0 ) = f( -1/2 . 0 ) = f ( -1/2 + 0 ) = f( -1/2 ) = -1/2
=> f ( 2006 ) = f ( 2006 + 0 ) = f(2006 . 0 ) = f(0 ) = -1/2
Cho hàm số f(x) thỏa mãn f(x)f'(x)=1 với mọi
x ∈ R. Biết ∫ 1 2 f ( x ) d x = a và f(1)=b, f(2)=c Tích phân ∫ 1 2 x f ( x ) d x bằng
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Vì
nên tích phân cần tính bằng tích phân từng phần
Ta có
=2c-b-a
Chọn đáp án A.