cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) VỚI a,b,c khác 0;b khác c
CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c khác 0, b khác c). Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Leftrightarrow ca+cb=2ab\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
cho a+b+c=0 (a,b,c khác 0) CMR: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
mọi người ơi giúp mình với.đừng thấy rồi lướt qua nha.mỗi người giúp mnhf 1 câu thôi không nhiều thì it giúp dc phần nào thì giúp mình nhé.mình cảm ơn trước ..
(1) Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
với a;b;c khác 0 và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)cm M=3abc
(2)cho a;b;c là các số đôi một khác nhau.Rút gọn:
A=\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
B=\(\frac{1}{a\left(a-b\right)\left(a-c\right)}+\frac{1}{b\left(b-a\right)\left(b-c\right)}+\frac{1}{c\left(c-a\right)\left(c-b\right)}\)
C=\(\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
D=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
cho a khác b khác c khác 0 và \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) Tính giá trị biểu thức M=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)
Xét a+b+c=0
\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
Xét a+b+c\(\ne0\)
\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)
Giải:
+) Xét a + b + c = 0
\(\Rightarrow-a=b+c\)
\(\Rightarrow-b=a+c\)
\(\Rightarrow-c=a+b\)
Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)
Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)
+) Xét \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Ta có:
\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)
Vậy M = -1 hoặc M = 8
Cho a,b,c khác nhau thỏa mãn : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
cm: \(\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(a-b\right)^2}\)
Cho a khác b khác c và a,b,c >0 thỏa \(\left(a+c\right)\left(b+c\right)=1\) \(CMR\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(a+c\right)^2}+\frac{1}{\left(b+c\right)^2}\ge4\)
bđt cần c/m <=>
\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)
ok
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)với a, b, c khác 0 ; b khác c
Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
suy ra \(2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
suy ra \(ab+ab=cb+ca\)
suy a \(ab-cb=ca-ab\)
suy ra \(b\left(a-c\right)=a\left(c-b\right)\)
suy ra \(\frac{a}{b}=\frac{a-c}{c-b}\left(Đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
\(\Rightarrow2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
\(\Rightarrow ab+ab=cb+ca\)
\(\Rightarrow ab-cd=ca-ab\)
\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
\(cho\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)cmr\frac{a}{b}=\frac{a-c}{c-b}\) (a,b,c khác 0; c khác b)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\)
\(\Leftrightarrow ab+ab=ac+cb\)
\(\Leftrightarrow ab-cb=ac-ab\)
\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)
Cho a,b ,c đều khác 0 và a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính M= (\(\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)