tìm a,b biết a-b=7 và BCNN của a;b =140
TÌM A VÀ B BIẾT RẰNG A-B =7 BCNN CỦA ( A VÀ B)=140
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn : (35;28)
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn :
(35;28)
Tìm a,b biết :a)a-b=7 và BCNN (a,b)=140
b)ƯCLN(a,b)=10 và BCNN(a,b)=900
a, Gọi d = (a,b) => a = md, b = nd (m,n thuộc Z+; (m,n) = 1)
Theo định nghĩa của BCNN ta có: [a,b] = dmn = 140
Ta có: a - b = 7
=>md - nd = 7
=>d(m - n) = 7
=> d là ƯC(7,140)
=> d = 1 hoặc d = 7
Với d = 1 \(\Rightarrow\orbr{\begin{cases}m-n=7\\mn=140\end{cases}}\) không có m,n thỏa mãn
Với d = 7 \(\Rightarrow\orbr{\begin{cases}m-n=1\\mn=20\end{cases}}\Rightarrow\orbr{\begin{cases}m=5\\n=4\end{cases}\Rightarrow\orbr{\begin{cases}a=5.7=35\\b=4.7=28\end{cases}}}\)
b, Giả sử \(a\le b\)
Vì (a,b)=10 => a=10m,b=10n \(\left(m\le n;m,n\in Z^+;\left(m,n\right)=1\right)\)
Theo định nghĩa của BCNN ta có: [a,b] = m.n.d = m.n.10 = 900 => m.n = 90
Ta có bảng:
m | 1 | 2 | 5 | 9 |
n | 9 | 5 | 2 | 1 |
a | 10 | 20 | 50 | 90 |
b | 90 | 50 | 20 | 10 |
Tìm 2 số a và b biết hiệu của chúng bằng 7 và BCNN của a và b là 140
Tìm a,b biết a-b=7 và BCNN(a,b)=140
Lời giải:
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
Có: $BCNN(a,b)=dxy=140$
$a-b=d(x-y)=7$
$\Rightarrow \frac{xy}{x-y}=\frac{140}{7}=20$
$xy=20(x-y)$
Vì $(x,y)=1$ nên $(x,x-y)=(y,x-y)=1$
$xy=20(x-y)\Rightarrow xy\vdots x-y$. Mà $(x,x-y)=(y,x-y)=1$ nên $x-y=1$
$\Rightarrow xy=20$
$\Rightarrow x=5, y=4$
$d=7:(x-y)=7:1=7$
Do đó: $a=dx=7.5=35; b=dy=7.4=28$
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
c.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:
$BCNN(a,b)=7.ƯCLN(a,b)$
$\Rightarrow dxy=7.d$
$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$
$\Rightarrow x+y=8$.
$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$
Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$
Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$
Tìm a, b thuộc Z biết a. b =24 và a + b = -10
Tìm a, b biết a - b = 7 và BCNN ( a,b ) = 140
a+b=-10
=>(a+b)2=100
=>a2+2ab+b2=100
=>a2+b2=100-2ab=100-2.24=52
=>a2+b2-2ab=52-2ab
=>(a-b)2=52-2.24=4
=>a-b=+-4
*)a-b=4
=>a=(4-10):2=-3
b=-7
*)a-b=-4
=>a=(-4-10):2=-7
b=-3
Ta có:140=22.5.7
Mà a-b=7
Thử các trường hợp ta không tìm thấy ab thõa mãn
cho (a;b) là d => a = md ; b= nd
với m;n \(\in N^{\cdot}\) và (a;b) = 1
a -b \(\Leftrightarrow\) d(m-n) = 7 ; a > b => m > n [1]
từ \(ab=\left(a;b\right).\left[a;b\right]\Rightarrow\left[a;b\right]=\frac{ab}{\left(a;b\right)}\frac{mnd^2}{d}=dmn\) [2]
thừ [1] và [2] => d thuộng ƯC(7;140) mà ƯCLN( 7;140) = 7
=> d thuộc Ư(7)
thay d ta thấy chỉ có 7 là thik hợp
d = 7 thì m-n = 1 => m = 5; n = 4 ; a=35 ; d= 28
Ác mộng ơi sai rồi bạn ạ.
Đến chỗ
(a-b)2=4
=> (a-b)2=22=(-2)2
=>a-b=+-2 rồi thử chứ
tìm a,b biết a-b=7 và BCNN(a,b)=140
Đặt ƯCLN(a;b)=d
Vậy a=dm ; b=dn (m>n vì a-b là số nguyên dương)
a-b=dm-dn=d.(m-n)=7=7.1=1.7
Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980
Khi đó: a=7m ; b=7n => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10
+ Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28
+Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14
Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140
Khi đó: a=1m=m ; b=1n=n => a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2 <=> a.b=140.1=35.4=28.5=70.2
Kết luận .....
a-b = 7 ;BCNN(a;b) = 140
=>140:m- 140:n =7
140 : (m-n) = 7
=>m-n = 20
m | n | a | b |
a,b ko co gia tri
bài này không có giá trị vì chỉ có a−b=7a−b=7 nên ngoại trừ cặp số (14;7)(14;7) ra, gcd(a;b)=1gcd(a;b)=1
dễ thấy (14;7)(14;7) không thoả mãn.
ta có; lcm(a;b)=abgcd(a;b)=140⇒ab=140lcm(a;b)=abgcd(a;b)=140⇒ab=140 k cho mình đi
Tìm a,b biết a-b=7 và BCNN(a,b)=140
Đặt ƯCLN(a;b)=d
Vậy a=dm ; b=dn (m>n vì a-b là số nguyên dương)
a-b=dm-dn=d.(m-n)=7=7.1=1.7
Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980
Khi đó: a=7m ; b=7n => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10
+ Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28
+Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14
Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140
Khi đó: a=1m=m ; b=1n=n =>
a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2
<=> a.b=140.1=35.4=28.5=70.2
Đó chính là các giá trị a,b thỏa mãn
Mình cũng đồng ý với Bánh ngon mời thưởng thức. Mình thử lại rồi. Sai là cái chắc.
Tìm hai số a và b . Biết a là tổng số ngày của 02 tuần lễ,UCLN(a,b)=7 và BCNN(a,b) = 42
Vì 1 tuần có 7 ngày
=> Số a là:
7 . 2 = 14
ƯCLN(a, b ) . BCNN(a, b ) = 7 . 42 = 294
Số b là:
294 : 14 = 21
Đ/S: .....
PP/ss: Hoq chắc ạ_:333
???????????
2k7 học lớp 6
Chắc bị đúp rồi
lớp 6 mà 2k7 chắc đúp