Tìm tất cả các số tự nhiên a và b khác 0 ;(a;b)=1 sao cho (a+b)/(a^2+b^2)=7/25
Tìm tất cả các số tự nhiên a khác 0 và b khác 0 , sao cho a + b = 96 và ƯCLN(a,b) = 16
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
tìm tất cả các số tự nhiên a khác 0.b khác 0sao cho a+b=96 và ƯCLN /a và b/=16
Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a+b=96 và ƯCLN của a và b là 16.
Mọi người giúp mình với nhé
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Tìm tất cả các số tự nhiên m khác 0 và n khác 0, sao cho m n 20và ƯCLN(m, n)= 5.
Tìm tất cả các số tự nhiên x khác 0 và y khác 0 sao cho x + y = 60 và ƯCLN(x:y) =15
Vì \(ƯCLN\left(x,y\right)=15\)nên ta đặt \(x=15a,y=15b;\left(a,b\right)=1\).
\(x+y=15a+15b=15\left(a+b\right)=60\Leftrightarrow a+b=4\)
mà \(\left(a,b\right)=1\)nên ta có bảng giá trị:
a | 1 | 3 |
b | 3 | 1 |
x | 15 | 45 |
y | 45 | 15 |
Bài 1: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có ba chữ số gồm cả ba chữ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37.
Bài 2: Có hai số tự nhiên x và y nào mà (x+y) . (x-y) = 1002 hay không?
Bài 3: Tìm các số tự nhiên a và b, sao cho a chia hết cho b và b chia hết cho a.
Tìm tất cả các số tự nhiên khác 0 a và b sao cho (a,b)=1 và \(\frac{a+b}{a^2+b^2}=\frac{7}{25}\)
cho A =6n+42 phần 6n với n thuộc N và n khác 0 tìm tất cả các số tự nhiên n sao cho A là số nguyên
\(A=\frac{6n+42}{6n}=\frac{6n}{6n}+\frac{42}{6n}=1+\frac{7}{n}\)
Để \(A\in Z\)=> \(\Rightarrow7\) chia hết cho \(n\) \(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)