Bài 1. Cho hai số tự nhiên a và b. Chứng minh:
a) a + b = 0 khi và chỉ khi a = b = 0;
b) ab = 0 khi và chỉ khi a = 0 hoặc b = 0;
cho hai số hưu tỉ a/b và c/d (a,b,c,d thuộc z b>0,d>0)
chứng
tỏ rằng ad,cd khi và chỉ khi a/b<c/d
Bạn đánh lại đề nhé. Chõ chứng tỏ rằng : ad,cd á bạn.
Cho hai số tự nhiên a và b :
Chứng minh rằng \(a^2+b^2\) chia hết cho a.b khi và chỉ khi a = b
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
Cho hai số hữu tỉ a b v à c d ( a,b,c, d ∈ Z, b > 0, d > 0). Chứng minh ad < bc khi và chỉ khi a b < c d
Nếu ad < bc => a d b d < b c b d = > a b < c d
Ngược lại nếu a b < c d = > a b . b d < c d . b d = > a d < b c
Bài 1 :Chứng minh rằng một số có hai chữ số chia hết cho 7 khi và chỉ khi tổng của chữ số hàng chục và chữ số hàng đơn vị chia hết cho 7
Bài 2 : Cho số tự nhiên A , người ta đỏi chỗ các chữ số của số A để được số B gấp 3 lần số A . Chứng minh rằng B chia hết cho 27
Bài 1 : Chứng minh rằng một số có hai chữ số chia hết cho 7 khi và chỉ khi tổng của chữ số hàng chục và 5 lần chữ số hàng đơn vị chia hết cho 7
Bài 2 :Cho số tự nhiên A , người ta đổi chỗ các chữ số của số A để được số B gấp 3 lần số A . Chứng minh rằng B chia hết cho 27
Cách tính số tam giác biết số đường thẳng cho trước cho VD
Bài 1 : Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, UCLN của chúng bằng 6.
Bài 2: Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
Bài 3 : Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
Bài 4 : Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
(bt 1,2,3,4 nêu tóm tắt cách giải)
Cách tính số tam giác biết số đường thẳng cho trước cho VD
Bài 1 : Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, UCLN của chúng bằng 6.
Bài 2: Tìm hai số tự nhiên a, b > 0, biết [a, b] = 240 và (a, b) = 16.
Bài 3 : Tìm hai số tự nhiên a, b > 0, biết ab = 216 và (a, b) = 6.
Bài 4 : Tìm hai số tự nhiên a, b > 0, biết ab = 180, [a, b] = 60.
(bt 1,2,3,4 nêu tóm tắt cách giải)
+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm
---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)
Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b
Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1
Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1
\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)
---> Nhân 6 hết lên là ra kết quả cuối cùng.
Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1
Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)
\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong
Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1
\(\Rightarrow6x.6y=216\Rightarrow xy=6\)
\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha
Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)
Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.
\(\Rightarrow3x.3y=180\Rightarrow xy=20\)
\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!
Thanks !!!!!!!!!!
Bài 1: số trong lớp không lớn hơn 30 hỏi có thể là bao nhiêu biết rằng khi xếp hàng 3 thì dư 2 bàn khi xếp hàng 5 thì dư 1 bàn
Bài 2:Tìm số tự nhiên a nhỏ nhất biết rằng số đó chia cho 3,4,5 dư 1 và chia hết cho 11
Bài 3: Tìm số tự nhiên a và b a<b biết rằng BCNN(a,b)+ƯCLN(a,b)=19 BCNN(a,b)-ƯCLN(a,b)=3
Bài 4: Tìm số tự nhiên a,b,c biết 16a=25b=30c. a,b,c là các số tự nhiên nhỏ nhất khác 0
Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1