Cho 2013 số dương a1; a2; .....;a2013 thỏa mãn:
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2013}}=1007\)
chứng minh: có ít nhất 2 trong 2013 số dương đã cho bằng nhau
a)cho a1 a2 a3 .... a 2014 la 2014 số nguyên dương bất kỳ cmr tồn tại ít nhất 2 số trong các số này mà hiêu của chúng chia hết cho 2013
cho a1 +a2+...+a2013=0
và a1+a2=a3+a4=...=a2013+a1=1
tính a1 chia cho a2013
Giúp mình nhe! 1;2;3;..;2013 là số thứ tự đó
cho các số tự nhiên a1;a2;...;a2013 có tổng bằng 2013^2014.
chứng minh rằng: a1^3 + a2^3 +... +a2013^3 chia hết cho 3.
Cho 20 số nguyên dương a1,a2,...,a20có tính chất:
a1>0
Tổng của 3 số viết liền nhau bất kì là một số dương
Tổng 20 số đó là số âm
CMR: a1*a14+a14*a12<a1*a12
Cho 20 số nguyên khác 0 : a1, a2, a3 ,...,a20 có các tính chất sau:
- a1 là số dương
-Tổng 3 số viết liền nhau bất kì là 1 số dương
-Tổng 20 số là số âm.
cmr : a1.a14 + a14.a12 < a1.a12
Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
cho 20 số nguyên khác 0 a1, a2 ,a3,...,a20 có các tính chất sau a1 là số dương, tổng 20 số đó là số âm. CMR a1*a14+a14*a12<a1*a12
Ta có a1 +a2+...+a20 <0
Lại có a2+a3+a4 >0;
a5 +a6+a7 >0;
a8+a9+a10>0;
a11+a12+a13>0;
a15+a16+a17>0;
a18 +a19+a20>0;
a1>0
=> a14<0;
Lại có a1+a2+a3 >0;
a4+a5+a6>0;
....
a10+a11+a12>0;
a15+a16+a17>0;
a18+a19+a20>0;
=> a13+a14<0;
mà a12+a13+a14>0;
=>a12>0;
=> a1.a12>0;
a1.a14+a14.a12<0;
=>a1.a14+a14.a12<a1.a12
Cho 23 số nguyên khác 0: a1;a2;a3;.....;a23 có tính chất:
+ a1 dương
+Tổng 3 số liên tiếp bất kì dương
+Tổng cả 23 số là âm
Chứng minh: a2 âm và a3 dương.
Cho 20 số nguyên khác 0 : a1, a2, a3, … , a20 có các tính chất sau: * a1 là số dương. * Tổng của ba số viết liền nhau bất kì là một số dương. * Tổng của 20 số đó là số âm. Chứng minh rằng : a1.a14 + a14a12 < a1.a12.
Đây là Toán lớp 5 hả
Ta có:
a1 + (a2 + a3 + a4) +... + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0
a1 > 0; a2 + a3 + a4 > 0;...; a11 + a12 + a13 > 0; a15 + a16 + a17 > 0; a18 + a19 + a20 > 0; a14 < 0
Ta có:
(a1 + a2 + a3) +...+ (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20)<0
=>(a13 + a14) < 0
Có a12 + a13 + a14 > 0 => a12 > 0
Từ các cmt => a1 > 0; a12 > 0; a14 < 0
=> a1.a14 + a12.a12 < a1.a12 (đpcm)
Cho a1; a2; b1; b2 là 4 số dương có a1.a2=b1.b2
CMR: (a1/b1)+(a2/b2)>=2
Dễ vậy mà ko làm đc àk
\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)
\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)
có a1.a2=b1.b2
=> a1/b1=b2/a2
có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)
áp dụng bất đẳng thức cosi cho 2 số dương có
\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)
Cho n số nguyên dương a1,a2,...,an. CMR:
(a1+a2+...+an)(1/a1 +1/a2 +...+ 1/an ) > hoặc = n^2