Cho tam giác ABC có AB=AC.Gọi BN và CM lần lượt là các tia phân giác của góc B;C của tam giác ABC (M thuộc AB;N thuộc AC).Chứng minh rằng :
a.AM=AN
b.MN//BC
c.BN=CM
Cho tam giác ABC . Các tia phân giác Góc B , C cắt nhau tại O , lần lượt AB , AC tại M và N . Cho biết BN + CM = BC .
a) CMR : Tam giác MCN là tam giác cân
b) Tính số đo các góc của tam giác ABC .
Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau tại O, lần lượt cắt AC và AB tại M và N. Cho biết BN+CM=BC
1) CMR tam giác MON là tam giác cân
2) Tính số đo các góc của tam giác MON
cho tam giác ABC, AB=AC. M và N lần lượt là trung điểm của AB và AC. C/m:
a, CM=BN
b, AI làn tia phân giác của góc BAC
a) Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Tương tự, ta có AC = AB và N là trung điểm của AC nên AN = NC.
Vậy ta có AM = MB = AN = NC.
Do đó, ta có tứ giác AMNC là hình bình hành.
Vì tứ giác AMNC là hình bình hành nên ta có CM song song với AN và BN song song với AM.
Do đó ta có CM = AN = BN.
b) Đặt I là giao điểm của tia phân giác của góc BAC với BC.
Ta cần chứng minh AI là tia phân giác của góc BAC.
Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Vì AI là tia phân giác của góc BAC nên ta có góc BAI = góc IAC.
Vì AM = MB nên ta có góc BAM = góc ABM.
Do đó ta có góc BAI = góc IAC = góc BAM = góc ABM.
Do đó, ta có tứ giác ABMI là tứ giác cân.
Do đó ta có AI là tia phân giác của góc BAC.
a) M, N là trung điểm của AB, AC
Suy ra MN song song BC
mà Góc ABC = Góc ACB (AB=AC nên tam giác ABC cân tại A)
Suy ra MNBC là hình thang cân
Suy ra CM=BN
b) Tam giác ABC cân tại A nên AI là phân giác, trung tuyến, đường cao
Cho tam giác ABC, tia phân giác BE VÀ CD LẦN LƯỢT LÀ CÁC TIA PHÂN GIÁC CỦA GÓC B,C(E THUỘC AC,D THUỘC AB) SAO CHO BE=CD. CM: TAM GIÁC ABC LÀ TAM GIÁC CÂN
Cho tam giác ABC nhọn, các đường cao BD, CE. Tia phân giác của các góc A B D ^ v à A C E ^ cắt nhau tại O, và lần lượt cắt AC, AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H: Chứng minh rằng:
a) BN ^ CM;
b) Tứ giác MNFIK là hình thoi
a) Sử dụng tính chất tổng các góc trong một tam giác bằng 1800.
⇒ A B C ^ = A E C ^ ⇒ N B D ^ = M C A ^
Trong DDBN có: N B D ^ + B N D ^ = 90 0
Gọi O = CM Ç BN Þ CM ^ BN = O (1)
b) Xét DCNK có: CO ^ KN Þ CO ^ BN, CO là phân giác A C E ^ nên DCNK cân ở C Þ O là trung điểm KN (2).
Tương tự chứng minh được là trung điểm MH (3).
Từ (1),(2) và (3) suy ra MNHK là hình thoi.
cho tam giác ABC có AB>AC .Trên AB lấy D sao cho BD=AC.Gọi M,N lần lượt là trung điểm của BC và AD.c/m: MN // tia phân giác của góc A.
cho tam giác ABC vuông tại A,có ABcho tam giác ABC vuông tại A,có AB<AC.Gọi M và n lần lượt là hình chiếu của D trên AB và AC,BN cắt CM tại K,AK cắt Dm tại I,BN cắt DM tại E ,CM cắt DN tại F.a) chứng minh EF song song BC b) C/m K là trực tâm tam giác AEFc) tính góc BID
cho tam giác ABC vuông tại A,có ABcho tam giác ABC vuông tại A,có AB<AC.Gọi M và n lần lượt là hình chiếu của D trên AB và AC,BN cắt CM tại K,AK cắt Dm tại I,BN cắt DM tại E ,CM cắt DN tại F.a) chứng minh EF song song BC b) C/m K là trực tâm tam giác AEFc) tính góc BID
ĐS: chiu thúa
cho tam giác ABC nhọn . Kẻ đường cao AH .Gọi D,E theo thứ tự là các điểm đối xứng của điểm H qua các cạnh AB , AC . Đường thẳng DE căt AB , AC lần lượt tại M,N a) CM tam giác DAE cân
b) CM HA là tia phân giác góc MHN
c) MC là phân giác góc NMH
d) Ba đường thẳng BN, CM , AH đồng quy
e) BN và CM là các đường cao của tam giác ABC
cho tam giác ABC có goc A = 120'. BN và CM lần lượt là các tia phân giác của góc B và góc C .
chứng minh rằng :BM+CN<BC