Cho tứ giác lồi ABCD. Gọi M;N;P;Q lần lượt là trung điểm của AB; BC;CD;DA.Chứng minh rằng:
a) véc tơ MP=1/2.(véc tơ AD+ véc tơ BC)
b) Hai tam giác ANP và CMQ có cùng trọng tâm
cho tứ giác lồi abcd,gọi m,n là trung điểm ab,cd.cmr:2mn=ad+bc giúp em với ạaa
1) C/m trong 1 tứ giác lồi có các góc không bằng nhau thì có ít nhất 1 góc tù và 1 góc nhọn.
2) Cho tứ giác lồi ABCD, gọi p là chu vi (tổng độ dài 4 cạnh) ABCD. C/m AC+BD < p < 2(AC+BD)
3) Cho tứ giác lồi ABCD. Các phân giác trong của các góc A & B cắt nhau ở I, các phân giác của các góc ngoài tại đỉnh A & B cắt nhau ở J. C/m AIB = (C+D):2 , AJB = (A+B):2
Cho tứ giác lồi ABCD. Gọi M, N, E, F theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác MNEF là hình gì? Vì sao?
Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi
noi A vs C ,BvsC
ap dung tinh chat duong trug binh cua tam giac
AM=EN
MN=FE
MNEF la hinh thoi
Cho tứ giác lồi ABCD. GỌI M là một điểm nằm bên trong tứ giác và N là một điểm nằm bên ngoài tứ giác. biết các tứ giác ABMD, BMCN LÀ hình bình hành,. CHỨNG MINH GÓC NAB bằng góc MDC
Cho tứ giác lồi ABCD. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a) nếu biết diện tích ABM bằng 3cm và diện tích tam giác CDN bằng 4cm tính diện tích tứ giác ABCD
Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?
A. MN // PQ với P là giao điểm của SM và AB; Q là giao điểm của SN và AD
B. MN, BD chéo nhau.
C. MN và BD cắt nhau.
D. MN là đường trung bình của tam giác IBD với I là trung điểm của SA.
Đáp án A
+) M là trọng tâm của tam giác SAB nên giao điểm P của SM và AB là trung điểm của AB.
Suy ra SM = 2/3 SP ⇒ S M S P = 2 3
N là trọng tâm của tam giác SAD nên giao điểm Q của SN và AD là trung điểm của AD
Suy ra SN = 2/3 SQ ⇒ S N S Q = 2 3
Xét tam giác SPQ có S M S P = S N S Q = 2 3 nên MN // PQ (1) (định lý Ta-lét)
Do đó đáp án A đúng.
+) Xét tam giác IBD có
I M I B = 1 3 (tam giác SAB có I là trung điểm của SA và M là trọng tâm)
I N I D = 1 3 (tam giác SAD có I là trung điểm của SA và N là trọng tâm)
Do đó I M I B = I N I D = 1 3 nên MN // BD
Suy ra đáp án B, C, D sai.
Chọn đáp án A
gọi m,n lần lượt là trung điểm bc, cd của tứ giác lồi abcd .chứng minh 2Sabcd <= (am+an)^2
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi .gọi M là điểm thuộc miền trong tam giác SCD .tìm giao tuyến của 2 mặt phẳng a) (SBC) và (SAD) b) (AMC) và (SAD) c) (SAM) và (ABCD) d) (SBM) và (SAC)
Nối BC và AD kéo dài cắt nhau tại F
\(\Rightarrow SF=\left(SBC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối CM kéo dài cắt SD tại G
\(\Rightarrow AG=\left(AMC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối SM kéo dài cắt CD tại E
\(\Rightarrow AE=\left(SAM\right)\cap\left(ABCD\right)\)
Trong mp (ABCD), nối BE cắt AC tại H
\(\Rightarrow SH=\left(SBM\right)\cap\left(SAC\right)\)
Cho tứ giác lồi ABCD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của AB , CD, AD, BD, AC. BC CMR: MN, PQ, EF đồng quy.
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy
Cho tứ giác lồi ABCD , 2 đường chéo AC và BD vuông góc với nhau biết AC=m , BD=n , gọi EF là trung điểm của AB và CD . Tính EF