Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamthiminhanh
Xem chi tiết
Smile
12 tháng 6 2021 lúc 21:02

 

 

Kẻ AH⊥BCBK⊥CD, đường chéo AC⊥AD

Đặt HC=HK+CK=x+\(\dfrac{10-x}{2}\)=\(\dfrac{x+10}{2}\)

Áp dụng hệ thức lượng trong ΔADC⊥A

Nguyễn KIm Phước
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 7 2017 lúc 9:13

Tran Trong Tan
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 18:31

Kẻ đường cao góc AE \(\Rightarrow AE=AB\)

Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\) 

\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACD có:

\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)

\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)

\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 18:31

undefined

Nuyen Thanh Dang
Xem chi tiết
Bùi Nguyễn Quỳnh Như
Xem chi tiết
Đoàn Đức Hà
8 tháng 7 2021 lúc 0:50

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

Khách vãng lai đã xóa
Đoàn Đức Hà
8 tháng 7 2021 lúc 0:50

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2017 lúc 15:40

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2  = 52, từ đó DB = 52 = 2 13 (cm)

Nguyễn Hoàng Anh
Xem chi tiết
๖Fly༉Donutღღ
18 tháng 5 2018 lúc 12:44

AB = ?????? bao nhiêu hã bạn

Tâm Nguyễn
Xem chi tiết
Pham Van Hung
11 tháng 7 2018 lúc 18:33

ABCD là hình thang cân (gt) nên AB song song với CD,AD=BC=6cm và góc C=góc ADC

DB la tia p/g của góc ADC(gt) nên góc ADB=góc BDC= 1/2 góc ADC =1/2 góc C

AB song song với CD (cmt) suy ra: góc ABD=góc BDC

Tam giác ABD có: góc ABD=góc ADB(=góc BDC)

Do đó tam giác ABD cân tại A (DHNB) suy ra: AB=AD=6cm

Tam giác DBC vuông tại B nên góc BDC+góc C=90 độ

Hay 1/2 góc C+ góc C=90 độ

3/2 góc C =90 độ

C=60 độ.Sau đó tính được góc BDC=30 độ

Tam giác BDC vuông tại B có góc BDC=30 độ vì thế BC=1/2 DC

Do đó:DC=2BC=2x6=12(cm)

Chu vi hình thang ABCD là:

                             AB+AD+BC+CD=6+6+6+12=30(cm)

Vậy chu vi hình thang ABCD là 30 cm

maugiao
11 tháng 7 2018 lúc 19:51

P/s chu vi hình thang 30 cm :)))))