Vẽ tam giác ABC biết \(\widehat{B}=90^o;BA=BC=2,5cm\).Sau đó đo các góc A và C để kiểm tra rằng \(\widehat{A}=\widehat{C}=45^o\)
1.Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR:
a) \(_{2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}}\)
b) \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c)\(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
Vẽ tam giác ABC biết \(\widehat{B}=90^o\),BA=BC=2,5cm.Sau đó đo góc A và C để kiểm tra rằng \(\widehat{A}=\widehat{C}=45^o\)
Vẽ tam giác ABC biết \(\widehat{B}=90^o\),BC=2cm,\(\widehat{C}=60^o\).Sau đó đo AC để kiểm tra rằng AC=4cm
so sánh các cạnh của tam giác ABC,biết rằng:
\(\widehat{A}=90^o\) \(\widehat{B}=45^o\) \(\widehat{C}=45^o\)
Ta có:
\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)
`@` Theo định lý quan hệ giữa góc và cạnh đối diện
`->`\(\text{BC > AC = AB}\).
1. Cho tam giác ABC có \(\widehat{C}< \widehat{B}< 90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR: \(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
Cho tam giác ABC, O là điểm nằm trong tam giác.
a) Cmr: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Biết: \(\widehat{ABO}+\widehat{ACO}=90-\widehat{\frac{A}{2}}\) và tia BO là tia phân giác của góc B. Cmr: Tia CO là tia phân giác của góc C
Vẽ hình nha bạn
Cho tam giác ABC, O là điểm nằm trong tam giác
Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\) và tia bo là tia phân giác góc B. Chứng minh rằng: Tia CO là tia phân giác góc O
Cho hai tam giác ABC và MNP có và Biết AB = 7cm. Tìm MN.
MN = cm.
1. Cho tam giác ABC và một điểm O nằm trong tam giác
a) CMR: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b)Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{1}{2}\widehat{A}\) và BO là tia phân giác của góc ABC. CMR: OC là tia phân giác của góc ACB