Cho a , m ,n thuộc N sao , Hãy So sánh :
\(A=\frac{10}{a^m}+\frac{10}{a^n}\&B=\frac{11}{a^m}+\frac{9}{a^n}\)
Cho a,m,n \(\in\)N* . Hãy so sánh A và B :
A = \(\frac{10}{a^m}+\frac{10}{a^n}\)
B = \(\frac{11}{a^m}+\frac{9}{a^n}\)
1)a)Cho a,b,n thuộc N*.Hãy so sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11+1}}\).So sánh A và B.
a+n/b+n và a/b . a,b,n thuộc N* hãy so sánh \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
Cho a,m,n \(\in\) N*, hãy so sánh hai tổng sau : A= \(\frac{10}{a^m}+\frac{10}{a^n}\) và B= \(\frac{11}{a^m}+\frac{9}{a^n}\)
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
vì đã chọn đúng cho việt quá 3 lần trong hai ngày !!!
câu mình Đúng 100% mà không được online math lựa chọn ! huhuhuhuhuh.....
Cho a,m,n \(\in\)N* . Hãy so sánh :A=\(\frac{10}{a^m}+\frac{10}{a^n}\)và B=\(\frac{11}{a^m}+\frac{9}{a^n}\)
( Ai giải mình mới tick nha )
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
so sánh \(A=\frac{10}{a^m}+\frac{10}{a^n};B=\frac{11}{a^m}+\frac{9}{a^n}\)
a. Cho a, b, c thuộc N*. Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b. Cho A = \(\frac{10^{11}-1}{10^{12}-1}\); B =\(\frac{10^{10}+1}{10^{11}+1}\). So sánh A và B
Các bạn giúp dùm mình nha mình đang cần gấp bạn nào làm đúng và nhanh nhất thì mình tick cho ( nhớ có lời giải nữa nha) ^^
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
Cho a,m,n thuộc N* , hãy so sánh các tống sau :
A = 10 / a^m + 10 / a^n
Và
B = 11 / a ^ m + 9 / a ^ m
Ta có :
\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)
\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)
Cả 2 vế đều có \(\frac{10}{a^m}+\frac{9}{a^n}\)nên ta so sánh \(\frac{1}{a^n}và\frac{1}{a^m}\)
TH1:
Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A
TH2:
Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A
TH3:
Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B