Cho tam giac ABC có : AB=15cm ; AC=20cm và BC=25 cm . Chứng tỏ tam giac ABC vuông tại A
CHO TAM GIÁC ABC CÓ AB=15CM AC=20CM TRÊN AB LẤY M SAO CHO AM=7,5 TRÊN AC LẤY N SAO CHO N=15CM TÍNH TAM GIÁC ABC BIẾT DIỆN TÍCH AMN BẰNG 36 CM2
Cho tam giác ABC có AB = 15cm , AC = 20cm . Trên cạnh AB lấy điểm M sao cho AM = 7,5cm , trên cạnh AC lấy điểm N sao cho AN = 15cm . Nối M với N . Tính diện tích tam giác ABC biết diện tích tam giác AMN bằng 36cm2 . Trả lời Diện tích tam giác ABC là .......... cm2 .
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích nha các bạn mik hứa sẽ tích lại thề luôn
Đào Ngọc Minh Thư
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích mik nha mik đang thiếu điểm
huhuhu
Cho hình tam giác ABC có AB= 15cm, AC = 20cm .Trên cạnh AB lấy điểm D sao cho AD = 10cm. Trên cạnh AC lấy diểm E sao cho AE= 15cm. Tính S hình tam giác ABC biết S hình tam giác ADE bằng 45cm2
cho tam giác abc có ab=15cm ac=20cm trên ab lấy d sao cho ad=10cm trên ac lấy e sao cho ae=15cm nối d với e tính S tam giác abc biết S tam giác ade=45cm2 ?
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 15cm. Diện tích tam giác ABC là :
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2
cho tam giác abc có ab = 15cm ac=20cm trên cạnh ab và ac lấy hai điểm DE sao cho cho ab=8 ae=6 hỏi tam giác abc, tam giác ade có đồng dạng không
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
cho tam giác ABC có AB=10cm,AC=17cm,BC=15cm, tính diện tích tam giác ABC
Cho tam giác ABC có AB = 15cm , AC = 20cm . Trên cạnh AB lấy điểm M sao cho AM = 7,5cm , trên cạnh AC lấy điểm N sao cho AN = 15cm . Nối M với N . Tính diện tích tam giác ABC biết diện tích tam giác AMN bằng 36cm2
Ta có hình vẽ :
( Bạn tự điền số vào nhé =)) . Mình chia phần không cân đối lắm lên bạn chia AC thành 4 phần bằng nhau nhé )
Ta thấy :
\(\frac{AM}{AB}\)\(=\)\(\frac{7,5}{15}\)\(=\frac{1}{2}\)
\(\Rightarrow\)\(AM=BM=\frac{1}{2}AB\)
Diện tích \(\Delta\)ANM = \(\frac{3}{4}\)Diện tích \(\Delta\)ACM ( Chung chiều cao hạ từ đỉnh M xuống và có đáy AN = \(\frac{3}{4}\)AC)
\(\Rightarrow\)Diện tích \(\Delta\)ACM là :
\(36\div\frac{3}{4}\)= \(48\)\(\left(cm^2\right)\)
Vì S \(\Delta ACM=\frac{1}{2}S\Delta ABC\)( Chung chiều cao hạ từ C xuống đáy AB, và đáy \(AM=\frac{1}{2}AB\))
\(\Rightarrow\)Diện tích \(\Delta\)\(ABC\)là ;
\(48\times2=96\)\(\left(cm^2\right)\)
Đáp số : 96 \(cm^2\)
nhé
Cho tam giác ABC, có cạnh AB =15cm, canh AC = 20cm. Trên cạnh AB lấy điểm M sao cho AM =10cm, trên cạnh AC lấy điểm E sao cho AE = 15cm. Nối điểm M với E. Tính diện tích tam giác ABC, biết diện tích tam giác AME là 34,8cm2.
Cho tam giác ABC có AB=17cm, AC=15cm, BC=8cm.
a) Chứng minh: tam giác ABC vuông.
b) vẽ đường cao CK của tam giác ABC. Giải tam giác vuông BKC
a) Xét tam giác ABC có:
\(AC^2+BC^2=225+64=289=AB^2\)
Nên tam giác ABC vuông tại A.
b) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(CK=\dfrac{AC\cdot BC}{AB}=\dfrac{15\cdot8}{17}=\dfrac{120}{17}\left(cm\right)\\BK=\dfrac{BC^2}{AB}=\dfrac{64}{17}\left(cm\right)\)
Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:
\(\sin B=\dfrac{CK}{BC}=\dfrac{15}{17}\\ \Rightarrow\widehat{B}\approx62^0\)
\(\sin C=\dfrac{BK}{BC}=\dfrac{8}{17}\\ \Rightarrow\widehat{C}\approx28^0\)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔBAC vuông tại C