Cho hàm số f(x) liên tục trên [1;4] và thỏa mãn điều kiện ∫ 1 2 f x dx = 1 , ∫ 1 2 f 2 x − 1 dx = 2 . Tính giá trị của biểu thức I= 2 3 f x d x .
A. 3
B. -1
C. 1
D. 0
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Cho hàm số f(x) có đạo hàm f’(x) = (x – 1)(x2 – 3)(x4 – 1) liên tục trên R.Tính số điểm cực trị của hàm số y=f(x)
A. 3
B. 2
C. 4
D. 1
Đáp án A
Phương pháp giải:
Giải phương trình f’ bằng 0, tìm nghiệm và lập bảng biến thiên xét điểm cực trị
Lời giải:
Ta có
Dễ thấy f’(x) đổi dấu khi đi qua 3 điểm => Hàm số có 3 điểm cực trị.
Cho hàm số f(x) liên tục trên R+ và thoả mãn ∫ f ( x + 1 ) x + 1 d x = 2 ( x + 1 + 3 ) x + 5 + C . Nguyên hàm của hàm số f(2x) trên tập R+ là
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = ( 1 - x ) 2 ( x + 1 ) 3 ( 3 - x ) . Hàm số y = f ( x ) đồng biến trên khoảng nào dưới đây
Cho hàm số f ( x ) = x - 1 x - 1 k h i x > 1 m x + 1 k h i x ≤ 1 Tìm m để hàm số f(x) liên tục trên R
A . m = - 1 2
B . m = 1 2
C. m = -2
D. m = 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Cho hàm số f(x) liên tục trên ℝ và có đạo hàm f'(x) = (x+1) x - 2 2 x - 3 3 . Hỏi hàm số f(x) có mấy điểm cực trị?
A. 2.
B. 3.
C. 1.
D. 5.
Chọn A.
Ta có
Bảng biến thiên
Do đó hàm số f(x) có hai điểm cực trị.
Cho f(x) là hàm số chẵn, liên tục trên ℝ thỏa mãn ∫ 0 1 f x d x = 2018 và g(x) là hàm số liên tục trên ℝ thỏa mãn g x + g − x = 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ − 1 1 f x . g x d x
A. I = 2018
B. I = 1009 2
C. I = 4036
D. I = 1008
Cho hàm số y=f(x) có đạo hàm liên tục trên i. Bảng biến thiên của hàm số y =f'(x) được cho như hình vẽ
Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng nào sau đây?
A. (-4;-2)
B. (-1; 1)
C. (1;3)
D. (-1;0)
Đáp án A
Vậy hàm số g(x) nghịch biến trên (-4; -2)
Cho hàm số y=f(x) có đạo hàm liên tục trên [1;4], biết f(4)=3, f(1)=1 . Tính ∫ 1 4 2 f ' ( x ) d x .